Mostra el registre d'ítem simple

dc.contributor.authorAbdollahi Hosnijeh, Amir
dc.contributor.authorPeco Regales, Christian
dc.contributor.authorMillán, Daniel
dc.contributor.authorArroyo Balaguer, Marino
dc.contributor.authorArias Vicente, Irene
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtica Aplicada III
dc.date.accessioned2014-11-07T10:38:00Z
dc.date.created2014-09-07
dc.date.issued2014-09-07
dc.identifier.citationAbdollahi, A. [et al.]. Computational evaluation of the flexoelectric effect in dielectric solids. "Journal of applied physics", 07 Setembre 2014, vol. 116, núm. 9, p. e093502-1- e093502-10.
dc.identifier.issn0021-8979
dc.identifier.urihttp://hdl.handle.net/2117/24591
dc.description.abstractFlexoelectricity is a size-dependent electromechanical mechanism coupling polarization and strain gradient. It exists in a wide variety of materials, and is most noticeable for nanoscale objects, where strain gradients are higher. Simulations are important to understand flexoelectricity because experiments at very small scales are difficult, and analytical solutions are scarce. Here, we computationally evaluate the role of flexoelectricity in the electromechanical response of linear dielectric solids in two-dimensions. We deal with the higher-order coupled partial differential equations using smooth meshfree basis functions in a Galerkin method, which allows us to consider general geometries and boundary conditions. We focus on the most common setups to quantify the flexoelectric response, namely, bending of cantilever beams and compression of truncated pyramids, which are generally interpreted through approximate solutions. While these approximations capture the sizedependent flexoelectric electromechanical coupling, we show that they only provide order-of-magnitude estimates as compared with a solution fully accounting for the multidimensional nature of the problem. We discuss the flexoelectric mechanism behind the enhanced size-dependent elasticity in beam configurations. We show that this mechanism is also responsible for the actuation of beams under purely electrical loading, supporting the idea that a mechanical flexoelectric sensor also behaves as an actuator. The predicted actuation-induced curvature is in a good agreement with experimental results. The truncated pyramid configuration highlights the critical role of geometry and boundary conditions on the effective electromechanical response. Our results suggest that computer simulations can help understanding and quantifying the physical properties of flexoelectric devices. (c) 2014 AIP Publishing LLC.
dc.format.extent10 p.
dc.language.isoeng
dc.publisherAmerican Institute of Physics (AIP)
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica aplicada a les ciències
dc.subject.lcshDielectric
dc.subject.otherADAPTIVE MESHFREE METHOD
dc.subject.otherPHASE-FIELD MODELS
dc.subject.otherFINITE-ELEMENTS
dc.subject.otherTHIN-FILMS
dc.subject.otherPOLARIZATION
dc.subject.otherGRADIENT
dc.subject.otherDEFORMATION
dc.subject.otherCRYSTALS
dc.titleComputational evaluation of the flexoelectric effect in dielectric solids
dc.typeArticle
dc.subject.lemacDielèctrics
dc.contributor.groupUniversitat Politècnica de Catalunya. LACÀN - Mètodes Numèrics en Ciències Aplicades i Enginyeria
dc.identifier.doi10.1063/1.4893974
dc.relation.publisherversionhttp://scitation.aip.org/content/aip/journal/jap/116/9/10.1063/1.4893974
dc.rights.accessRestricted access - publisher's policy
local.identifier.drac15272967
dc.description.versionPostprint (published version)
dc.date.lift10000-01-01
local.citation.authorAbdollahi, A.; Peco, C.; Millán, D.; Arroyo, M.; Arias, I.
local.citation.publicationNameJournal of applied physics
local.citation.volume116
local.citation.number9
local.citation.startingPagee093502-1
local.citation.endingPagee093502-10


Fitxers d'aquest items

Imatge en miniatura

Aquest ítem apareix a les col·leccions següents

Mostra el registre d'ítem simple