Computational evaluation of the flexoelectric effect in dielectric solids
View/Open
Abdollahi et al.pdf (1,088Mb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/24591
Document typeArticle
Defense date2014-09-07
PublisherAmerican Institute of Physics (AIP)
Rights accessRestricted access - publisher's policy
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
Flexoelectricity is a size-dependent electromechanical mechanism coupling polarization and strain gradient. It exists in a wide variety of materials, and is most noticeable for nanoscale objects, where strain gradients are higher. Simulations are important to understand flexoelectricity because experiments at very small scales are difficult, and analytical solutions are scarce. Here, we computationally evaluate the role of flexoelectricity in the electromechanical response of linear dielectric solids in two-dimensions. We deal with the higher-order coupled partial differential equations using smooth meshfree basis functions in a Galerkin method, which allows us to consider general geometries and boundary conditions. We focus on the most common setups to quantify the flexoelectric response, namely, bending of cantilever beams and compression of truncated pyramids, which are generally interpreted through approximate solutions. While these approximations capture the sizedependent flexoelectric electromechanical coupling, we show that they only provide order-of-magnitude estimates as compared with a solution fully accounting for the multidimensional nature of the problem. We discuss the flexoelectric mechanism behind the enhanced size-dependent elasticity in beam configurations. We show that this mechanism is also responsible for the actuation of beams under purely electrical loading, supporting the idea that a mechanical flexoelectric sensor also behaves as an actuator. The predicted actuation-induced curvature is in a good agreement with experimental results. The truncated pyramid configuration highlights the critical role of geometry and boundary conditions on the effective electromechanical response. Our results suggest that computer simulations can help understanding and quantifying the physical properties of flexoelectric devices. (c) 2014 AIP Publishing LLC.
CitationAbdollahi, A. [et al.]. Computational evaluation of the flexoelectric effect in dielectric solids. "Journal of applied physics", 07 Setembre 2014, vol. 116, núm. 9, p. e093502-1- e093502-10.
ISSN0021-8979
Files | Description | Size | Format | View |
---|---|---|---|---|
Abdollahi et al.pdf | 1,088Mb | Restricted access |