Show simple item record

dc.contributor.authorFoucaud, Florent
dc.contributor.authorKlasing, Ralf
dc.contributor.authorSlater, Peter J
dc.identifier.citationFoucaud, F.; Klasing, R.; Slater, P. Centroidal bases in graphs. "Networks", 01 Setembre 2014, vol. 64, núm. 2, p. 96-108.
dc.description.abstractWe introduce the notion of a centroidal locating set of a graph G, that is, a set L of vertices such that all vertices in G are uniquely determined by their relative distances to the vertices of L. A centroidal locating set of G of minimum size is called a centroidal basis, and its size is the centroidal dimension CD (G). This notion, which is related to previous concepts, gives a new way of identifying the vertices of a graph. The centroidal dimension of a graph G is lower- and upper-bounded by the metric dimension and twice the location-domination number of G, respectively. The latter two parameters are standard and well-studied notions in the field of graph identification. We show that for any graph G with n vertices and maximum degree at least 2, (1 + o(1)) In n/InInn <= CD <= (G) n - 1. We discuss the tightness of these bounds and in particular, we characterize the set of graphs reaching the upper bound. We then show that for graphs in which every pair of vertices is connected via a bounded number of paths, CD(G) = Omega(root vertical bar E(G)vertical bar) , the bound being tight for paths and cycles. We finally investigate the computational complexity of determining CD(G) for an input graph G, showing that the problem is hard and cannot even be approximated efficiently up to a factor of o(log n). We also give an O (root nInn)-approximation algorithm.
dc.format.extent13 p.
dc.subjectÀrees temàtiques de la UPC::Informàtica::Aplicacions de la informàtica
dc.subject.lcshGraph theory
dc.subject.othercentroidal dimension
dc.subject.othermetric dimension
dc.subject.otherIDENTIFYING CODES
dc.subject.otherMETRIC DIMENSION
dc.titleCentroidal bases in graphs
dc.subject.lemacGrafs, Teoria de
dc.description.peerreviewedPeer Reviewed
dc.rights.accessOpen Access
dc.description.versionPostprint (author’s final draft)
local.citation.authorFoucaud, F.; Klasing, R.; Slater, P.

Files in this item


This item appears in the following Collection(s)

    Show simple item record

    All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder