Show simple item record

dc.contributor.authorMesodiakaki, Agapi
dc.contributor.authorAdelantado Freixer, Ferran
dc.contributor.authorAlonso Zárate, Luis Gonzaga
dc.contributor.authorVerikoukis, Christos
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions
dc.date.accessioned2014-09-25T14:43:31Z
dc.date.created2014-07
dc.date.issued2014-07
dc.identifier.citationMesodiakaki, A. [et al.]. Energy-efficient user association in cognitive heterogeneous networks. "IEEE communications magazine", Juliol 2014, vol. 52, núm. 7, p. 22-29.
dc.identifier.issn0163-6804
dc.identifier.urihttp://hdl.handle.net/2117/24164
dc.description.abstractDue to the ever increasing data traffic demands, which are directly connected to increased energy consumption, it becomes challenging for operators to achieve capacity enhancement while limiting their electric bill. To that end, exploiting the context awareness of future cognitive networks is expected to play a key role. Next generation cellular networks are about to include a plethora of small cells, with users being able to communicate via multiple bands. Given that small cells are expected to be eventually as close as 50 m apart, not all of them will have a direct connection to the core network; thus, multihop communication through neighboring small cells may be required. In such architectures, the user association problem becomes challenging, with backhaul energy consumption being a definitive parameter. Thus, in this article, we study the user association problem in cognitive heterogeneous networks. We evaluate the existing approaches in terms of energy efficiency and show the potential of exploiting the available context-aware information (i.e., users' measurements and requirements, knowledge of the network architecture, and the available spectrum resources of each base station) to associate the users in an energy-efficient way, while maintaining high spectrum efficiency. Our study considers both the access network and backhaul energy consumption, while the performance of the association algorithms is evaluated under two different case study scenarios.
dc.format.extent8 p.
dc.language.isoeng
dc.subjectÀrees temàtiques de la UPC::Energies::Gestió de l'energia
dc.subjectÀrees temàtiques de la UPC::Enginyeria de la telecomunicació::Telemàtica i xarxes d'ordinadors::Xarxes de banda ampla
dc.subject.lcshEnergy consumption
dc.subject.lcshHeterogeneous computing
dc.subject.lcshAlgorithms
dc.subject.otherAlgorithm design and analysis
dc.subject.otherBandwidth
dc.subject.otherEnergy consumption
dc.subject.otherEnergy efficiency
dc.subject.otherInterference
dc.subject.otherSignal to noise ratio
dc.titleEnergy-efficient user association in cognitive heterogeneous networks
dc.typeArticle
dc.subject.lemacEnergia -- Consum
dc.subject.lemacAlgorismes computacionals
dc.subject.lemacXarxes heterogènies
dc.contributor.groupUniversitat Politècnica de Catalunya. WiComTec - Grup de recerca en Tecnologies i Comunicacions Sense Fils
dc.identifier.doi10.1109/MCOM.2014.6852079
dc.description.peerreviewedPeer Reviewed
dc.rights.accessRestricted access - publisher's policy
local.identifier.drac15115081
dc.description.versionPostprint (published version)
dc.date.lift10000-01-01
local.citation.authorMesodiakaki, A.; Adelantado, F.; Alonso, L.; Verikoukis, C.
local.citation.publicationNameIEEE communications magazine
local.citation.volume52
local.citation.number7
local.citation.startingPage22
local.citation.endingPage29


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder