Neural network-based autonomous allocation of resources in virtual networks
View/Open
Contingut article (1,143Mb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/24150
Document typeConference report
Defense date2014
Rights accessRestricted access - publisher's policy
Abstract
Network virtualisation has received attention as a
way to allow for sharing of physical network resources. Sharing resources involves mapping of virtual nodes and links onto physical nodes and links respectively, and thereafter managing the allocated resources to ensure efficient resource utilisation. In this paper, we apply artificial neural networks for a dynamic, decentralised and autonomous allocation of physical network resources to the virtual networks. The objective is to achieve better efficiency in the utilisation of substrate network resources while ensuring that the quality of service requirements of the virtual networks are not violated. The proposed approach is evaluated by comparison with two static resource allocation schemes and a reinforcement learning-based approach.
CitationMijumbi, R. [et al.]. Neural network-based autonomous allocation of resources in virtual networks. A: EUROPEAN CONFERENCE ON NETWORKS AND COMMUNICATIONS. "2014 European Conference on Networks and Communications (EuCNC)". Bologna: 2014, p. 1-6.
DLIEEE Catalog Number: CFP1442Y – ART
ISBN978-1-4799-5280-9
Collections
Files | Description | Size | Format | View |
---|---|---|---|---|
EuCNC Final Camera Ready.pdf![]() | Contingut article | 1,143Mb | Restricted access |
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder