Geodesic order types
View/Open
Aichholzer et al.pdf (707,9Kb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/24060
Document typeArticle
Defense date2014-09-01
Rights accessRestricted access - publisher's policy
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
The geodesic between two points a and b in the interior of a simple polygon P is the shortest polygonal path inside P that connects a to b. It is thus the natural generalization of straight line segments on unconstrained point sets to polygonal environments. In this paper we use this extension to generalize the concept of the order type of a set of points in the Euclidean plane to geodesic order types. In particular, we show that, for any set S of points and an ordered subset of at least four points, one can always construct a polygon P such that the points of define the geodesic hull of S w.r.t. P, in the specified order. Moreover, we show that an abstract order type derived from the dual of the Pappus arrangement can be realized as a geodesic order type.
CitationAichholzer, O. [et al.]. Geodesic order types. "Algorithmica", 01 Setembre 2014, vol. 70, núm. 1, p. 112-128.
ISSN0178-4617
Publisher versionhttp://link.springer.com/article/10.1007%2Fs00453-013-9818-8
Collections
Files | Description | Size | Format | View |
---|---|---|---|---|
Aichholzer et al.pdf | 707,9Kb | Restricted access |