The force matching approach to multiscale simulations: merits, shortcomings, and future perspectives
View/Open
qua24621.pdf (291,0Kb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Document typeArticle
Defense date2014-08-15
Rights accessRestricted access - publisher's policy
Abstract
Among the various approaches to multiscale simulations, in recent years, force matching has been known for a quick growth. The method is based on a least-square fit of reference properties obtained from simulations at a certain scale, to parameterize the force field for coarser-grained scale simulations. Its advantage with respect to conventional schemes used for parameterizing force fields, lies in that only physically accessible configurations are sampled, and that the number of reference data per configuration is large. In this perspective article, we discuss some recent findings on the tailoring of the objective function, on the choice of the empirical potential, and on the way to improve the quality of the reference calculations. We present pros and cons of the algorithm, and we propose a road map to future developments. (C) 2014 Wiley Periodicals, Inc.
CitationMasia, M.; Guardia, E.; Nicolini, P. The force matching approach to multiscale simulations: merits, shortcomings, and future perspectives. "International journal of quantum chemistry", 15 Agost 2014, vol. 114, núm. 16, p. 1036-1040.
ISSN0020-7608
Publisher versionhttp://onlinelibrary.wiley.com/enhanced/doi/10.1002/qua.24621/
Files | Description | Size | Format | View |
---|---|---|---|---|
qua24621.pdf![]() | 291,0Kb | Restricted access |
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 3.0 Spain