Show simple item record

dc.contributor.authorBezmalinovic, Dario
dc.contributor.authorStrahl, Stephan
dc.contributor.authorRoda Serrat, Vicente
dc.contributor.authorHusar, Attila Peter
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial
dc.contributor.otherInstitut de Robòtica i Informàtica Industrial
dc.date.accessioned2014-08-29T07:17:42Z
dc.date.available2014-08-29T07:17:42Z
dc.date.created2014
dc.date.issued2014
dc.identifier.citationBezmalinovic, D. [et al.]. Water transport study in high temperature proton exchange membrane fuel cell stack. "International journal of hydrogen energy", 2014, vol. 39, núm. 20, p. 10627-10640.
dc.identifier.issn0360-3199
dc.identifier.urihttp://hdl.handle.net/2117/23692
dc.description.abstractA study of water transport in a high temperature phosphoric acid doped polybenzimidazole (PBI) membrane fuel cell stack is reported. Tests with different stoichiometries of dry cathode and different humidity levels of anode are performed. It is found that water transport across the membrane electrode assembly (MEA) is noteworthy and that water vapor partial pressure on the anode outlet is almost always higher than on the cathode outlet, even when using dry hydrogen. The water transport is a strong function of current density but it also depends on stoichiometry and humidity level. In a series of tests with dry nitrogen on one side and humid nitrogen on the other side, the membrane's water permeability coefficient is determined to be 2.4 × 10-13 mol s-1 cm-1 Pa-1 at 160 °C which is more than an order of magnitude higher than the values previously reported in the literature. Also, the results indicate that the permeability coefficient might be relative humidity dependent and could even be somewhat higher than the value reported here, but further investigation is needed. The experimental findings are reproduced and explained with a 2D steady state computational fluid dynamics (CFD) model. Internal water transport profiles across the membrane and along the gas flow channels are presented and discussed.
dc.format.extent14 p.
dc.language.isoeng
dc.subjectÀrees temàtiques de la UPC::Energies::Tecnologia energètica::Emmagatzematge i transport de l'energia
dc.subject.lcshMembranes (Technology)
dc.subject.lcshProton exchange membrane fuel cells
dc.subject.lcshPEMFCs
dc.subject.otherPower generation control
dc.subject.otherHTPEM
dc.subject.otherPBI
dc.subject.otherwater transport
dc.subject.otherhumidification
dc.subject.othermodeling
dc.titleWater transport study in high temperature proton exchange membrane fuel cell stack
dc.typeArticle
dc.subject.lemacPiles de combustible -- Control electrònic
dc.contributor.groupUniversitat Politècnica de Catalunya. ACES - Control Avançat de Sistemes d'Energia
dc.identifier.doi10.1016/j.ijhydene.2014.04.186
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttp://www.sciencedirect.com/science/article/pii/S0360319914012762
dc.rights.accessOpen Access
local.identifier.drac15073741
dc.description.versionPostprint (author’s final draft)
local.citation.authorBezmalinovic, D.; Strahl, S.; Roda, V.; Husar, A.
local.citation.publicationNameInternational journal of hydrogen energy
local.citation.volume39
local.citation.number20
local.citation.startingPage10627
local.citation.endingPage10640


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record