3D human action recognition in multiple view scenarios

Document typeConference report
Defense date2006
PublisherUniversitat Politècnica de Catalunya (UPC)
Rights accessOpen Access
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
This paper presents a novel view-independent
approach to the recognition of human gestures of several
people in low resolution sequences from multiple calibrated
cameras. In contraposition with other multi-ocular gesture
recognition systems based on generating a classification on
a fusion of features coming from different views, our system
performs a data fusion (3D representation of the scene) and
then a feature extraction and classification. Motion descriptors
introduced by Bobick et al. for 2D data are extended
to 3D and a set of features based on 3D invariant statistical
moments are computed. Finally, a Bayesian classifier is employed
to perform recognition over a small set of actions. Results
are provided showing the effectiveness of the proposed
algorithm in a SmartRoom scenario.
CitationCanton, C. [et al.]. 3D human action recognition in multiple view scenarios. A: Jornades de Recerca en Automàtica, Visió i Robòtica. "2es Jornades de Recerca en Automàtica, Visió i Robòtica: 4, 5 i 6 de juliol de 2006". Barcelona: Universitat Politècnica de Catalunya (UPC), 2006, p. 1-5.
ISBN84-7653-885-5
Publisher versionhttp://www.cristiancanton.org/data/pubs/papers/2006-AVR-Canton.pdf
Files | Description | Size | Format | View |
---|---|---|---|---|
3D Human Action ... ultiple View Scenarios.pdf | 3D Human Action Recognition In Multiple View Scenarios | 380,6Kb | View/Open |