3D human action recognition in multiple view scenarios
Cita com:
hdl:2117/23651
Document typeConference report
Defense date2006
PublisherUniversitat Politècnica de Catalunya (UPC)
Rights accessOpen Access
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
This paper presents a novel view-independent
approach to the recognition of human gestures of several
people in low resolution sequences from multiple calibrated
cameras. In contraposition with other multi-ocular gesture
recognition systems based on generating a classification on
a fusion of features coming from different views, our system
performs a data fusion (3D representation of the scene) and
then a feature extraction and classification. Motion descriptors
introduced by Bobick et al. for 2D data are extended
to 3D and a set of features based on 3D invariant statistical
moments are computed. Finally, a Bayesian classifier is employed
to perform recognition over a small set of actions. Results
are provided showing the effectiveness of the proposed
algorithm in a SmartRoom scenario.
CitationCanton, C. [et al.]. 3D human action recognition in multiple view scenarios. A: Jornades de Recerca en Automàtica, Visió i Robòtica. "2es Jornades de Recerca en Automàtica, Visió i Robòtica: 4, 5 i 6 de juliol de 2006". Barcelona: Universitat Politècnica de Catalunya (UPC), 2006, p. 1-5.
ISBN84-7653-885-5
Publisher versionhttp://www.cristiancanton.org/data/pubs/papers/2006-AVR-Canton.pdf
Files | Description | Size | Format | View |
---|---|---|---|---|
3D Human Action ... ultiple View Scenarios.pdf | 3D Human Action Recognition In Multiple View Scenarios | 380,6Kb | View/Open |