Mostra el registre d'ítem simple

dc.contributor.authorDalfó Simó, Cristina
dc.contributor.authorFiol Mora, Miquel Àngel
dc.contributor.authorGarriga Valle, Ernest
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtica Aplicada IV
dc.description.abstractA graph is walk-regular if the number of cycles of length $\ell$ rooted at a given vertex is a constant through all the vertices. For a walk-regular graph $G$ with $d+1$ different eigenvalues and spectrally maximum diameter $D=d$, we study the geometry of its $d$-cliques, that is, the sets of vertices which are mutually at distance $d$. When these vertices are projected onto an eigenspace of its adjacency matrix, we show that they form a regular tetrahedron and we compute its parameters. Moreover, the results are generalized to the case of $k$-walk-regular graphs, a family which includes both walk-regular and distance-regular graphs, and their $t$-cliques or vertices at distance $t$ from each other.
dc.format.extent11 p.
dc.rightsAttribution-NonCommercial-NoDerivs 2.5 Spain
dc.subject.lcshGraph theory
dc.subject.otherWalk-regular graphs
dc.subject.otherk-walk-regular graphs
dc.subject.otherSpectral regularity
dc.subject.otherCrossel local multiplicities of eigenvalues
dc.titleThe geometry of t-cliques in k-walk-regular graphs
dc.subject.lemacGrafs, Teoria de
dc.contributor.groupUniversitat Politècnica de Catalunya. COMBGRAPH - Combinatòria, Teoria de Grafs i Aplicacions
dc.subject.amsClassificació AMS::05 Combinatorics::05C Graph theory
dc.rights.accessOpen Access

Fitxers d'aquest items


Aquest ítem apareix a les col·leccions següents

Mostra el registre d'ítem simple

Llevat que s'hi indiqui el contrari, els continguts d'aquesta obra estan subjectes a la llicència de Creative Commons: Reconeixement-NoComercial-SenseObraDerivada 2.5 Espanya