Show simple item record

dc.contributor.authorDalfó Simó, Cristina
dc.contributor.authorFiol Mora, Miquel Àngel
dc.contributor.authorGarriga Valle, Ernest
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtica Aplicada IV
dc.description.abstractA graph is walk-regular if the number of cycles of length $\ell$ rooted at a given vertex is a constant through all the vertices. For a walk-regular graph $G$ with $d+1$ different eigenvalues and spectrally maximum diameter $D=d$, we study the geometry of its $d$-cliques, that is, the sets of vertices which are mutually at distance $d$. When these vertices are projected onto an eigenspace of its adjacency matrix, we show that they form a regular tetrahedron and we compute its parameters. Moreover, the results are generalized to the case of $k$-walk-regular graphs, a family which includes both walk-regular and distance-regular graphs, and their $t$-cliques or vertices at distance $t$ from each other.
dc.format.extent11 p.
dc.rightsAttribution-NonCommercial-NoDerivs 2.5 Spain
dc.subject.lcshGraph theory
dc.subject.otherWalk-regular graphs
dc.subject.otherk-walk-regular graphs
dc.subject.otherSpectral regularity
dc.subject.otherCrossel local multiplicities of eigenvalues
dc.titleThe geometry of t-cliques in k-walk-regular graphs
dc.subject.lemacGrafs, Teoria de
dc.contributor.groupUniversitat Politècnica de Catalunya. COMBGRAPH - Combinatòria, Teoria de Grafs i Aplicacions
dc.subject.amsClassificació AMS::05 Combinatorics::05C Graph theory
dc.rights.accessOpen Access

Files in this item


This item appears in the following Collection(s)

Show simple item record

Except where otherwise noted, content on this work is licensed under a Creative Commons license: Attribution-NonCommercial-NoDerivs 2.5 Spain