Multi-scale analysis of cone penetration test (CPT) in a virtual calibration chamber
View/Open
cgj-2012-0476.pdf (6,803Mb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/23541
Document typeArticle
Defense date2014-01
Rights accessRestricted access - publisher's policy
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
A virtual calibration chamber was developed using a three-dimensional (3D) discrete element method (DEM) to perform cone penetration tests (CPTs) on a discrete analogue of Ticino sand. The macroscale response of the DEM model was previously shown to be in good quantitative agreement with that of analogous physical models. In the current study the performance of the model at meso and microscale levels of resolution is examined. The microscale response is examined using particle displacements and contact force distributions. The mesoscale behaviour is examined using stress and strain fields obtained through appropriate averaging and interpolating procedures. Four CPTs are examined at the steady-state penetration stage. The effects of radial boundary conditions, initial stress state, initial average density, and particle rotational inertia are examined. The ability of the micro and mesoscale data to identify and explain the relevant mechanisms underlying the significant differences in the macroscale response of the models is discussed. Comparisons with similar phenomena observed in physical tests are also highlighted.
CitationButlanska, J. [et al.]. Multi-scale analysis of cone penetration test (CPT) in a virtual calibration chamber. "Canadian geotechnical journal", Gener 2014, vol. 51, núm. 1, p. 51-66.
ISSN0008-3674
Files | Description | Size | Format | View |
---|---|---|---|---|
cgj-2012-0476.pdf | 6,803Mb | Restricted access |