The extremal solution for the fractional Laplacian
View/Open
Ros & Serra.pdf (390,0Kb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/23499
Document typeArticle
Defense date2014-07-01
Rights accessRestricted access - publisher's policy
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
We study the extremal solution for the problem (-¿)su=¿f(u) in O , u=0 in Rn\O , where ¿>0 is a parameter and s¿(0,1) . We extend some well known results for the extremal solution when the operator is the Laplacian to this nonlocal case. For general convex nonlinearities we prove that the extremal solution is bounded in dimensions n<4s . We also show that, for exponential and power-like nonlinearities, the extremal solution is bounded whenever n<10s . In the limit s¿1 , n<10 is optimal. In addition, we show that the extremal solution is Hs(Rn) in any dimension whenever the domain is convex. To obtain some of these results we need Lq estimates for solutions to the linear Dirichlet problem for the fractional Laplacian with Lp data. We prove optimal Lq and Cß estimates, depending on the value of p . These estimates follow from classical embedding results for the Riesz potential in Rn . Finally, to prove the Hs regularity of the extremal solution we need an L8 estimate near the boundary of convex domains, which we obtain via the moving planes method. For it, we use a maximum principle in small domains for integro-differential operators with decreasing kernels.
CitationRos, X.; Serra, J. The extremal solution for the fractional Laplacian. "Calculus of variations and partial differential equations", 01 Juliol 2014, vol. 50, núm. 3-4, p. 723-750.
ISSN0944-2669
Publisher versionhttp://link.springer.com/article/10.1007%2Fs00526-013-0653-1
Collections
Files | Description | Size | Format | View |
---|---|---|---|---|
Ros & Serra.pdf![]() | 390,0Kb | Restricted access |