Show simple item record

dc.contributor.authorSerra, Tiziano
dc.contributor.authorOrtiz Hernández, Mónica
dc.contributor.authorEngel López, Elisabeth
dc.contributor.authorPlanell Estany, Josep Anton
dc.contributor.authorNavarro Toro, Melba Eugenia
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Ciència dels Materials i Enginyeria Metal·lúrgica
dc.contributor.otherInstitut de Bioenginyeria de Catalunya
dc.date.accessioned2014-07-09T11:05:36Z
dc.date.created2014-05-01
dc.date.issued2014-05-01
dc.identifier.citationSerra, T. [et al.]. Relevance of PEG in PLA-based blends for tissue engineering 3D-printed scaffolds. "Materials science and engineering C. Biomimetic and supramolecular systems", 01 Maig 2014, vol. 38, p. 55-62.
dc.identifier.issn0928-4931
dc.identifier.urihttp://hdl.handle.net/2117/23451
dc.description.abstractAchieving high quality 3D-printed structures requires establishing the right printing conditions. Finding processing conditions that satisfy both the fabrication process and the final required scaffold properties is crucial. This work stresses the importance of studying the outcome of the plasticizing effect of PEG on PLA-based blends used for the fabrication of 3D-direct-printed scaffolds for tissue engineering applications. For this, PLA/PEG blends with 5, 10 and 20% (w/w) of PEG and PLA/PEG/bioactive CaP glass composites were processed in the form of 3D rapid prototyping scaffolds. Surface analysis and differential scanning calorimetry revealed a rearrangement of polymer chains and a topography, wettability and elastic modulus increase of the studied surfaces as PEG was incorporated. Moreover, addition of 10 and 20% PEG led to non-uniform 3D structures with lower mechanical properties. In vitro degradation studies showed that the inclusion of PEG significantly accelerated the degradation rate of the material. Results indicated that the presence of PEG not only improves PLA processing but also leads to relevant surface, geometrical and structural changes including modulation of the degradation rate of PLA-based 3D printed scaffolds. (C) 2014 Elsevier B.V. All rights reserved.
dc.format.extent8 p.
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Enginyeria dels materials
dc.subject.lcshTissue engineering
dc.subject.lcshTissue scaffolds
dc.subject.otherRapid prototyping
dc.subject.otherScaffold
dc.subject.otherPolylactic acid
dc.subject.otherSurface characterization
dc.subject.other3D-printing
dc.subject.otherPOLY(LACTIC ACID)
dc.subject.otherPOLY(ETHYLENE GLYCOL)
dc.subject.otherCOMPOSITE SCAFFOLDS
dc.subject.otherPHOSPHATE-GLASSES
dc.subject.otherIN-VITRO
dc.subject.otherBONE
dc.subject.otherCRYSTALLIZATION
dc.subject.otherDEGRADATION
dc.subject.otherFABRICATION
dc.subject.otherDEPOSITION
dc.titleRelevance of PEG in PLA-based blends for tissue engineering 3D-printed scaffolds
dc.typeArticle
dc.subject.lemacEnginyeria de teixits
dc.subject.lemacTeixits -- Bastides
dc.contributor.groupUniversitat Politècnica de Catalunya. BBT - Biomaterials, Biomecànica i Enginyeria de Teixits
dc.identifier.doi10.1016/j.msec.2014.01.003
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttp://www.sciencedirect.com/science/article/pii/S0928493114000046#
dc.rights.accessRestricted access - publisher's policy
drac.iddocument14935944
dc.description.versionPostprint (published version)
dc.date.lift10000-01-01
upcommons.citation.authorSerra, T.; Ortiz, M.; Engel, E.; Planell, J.; Navarro, M.
upcommons.citation.publishedtrue
upcommons.citation.publicationNameMaterials science and engineering C. Biomimetic and supramolecular systems
upcommons.citation.volume38
upcommons.citation.startingPage55
upcommons.citation.endingPage62


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Except where otherwise noted, content on this work is licensed under a Creative Commons license: Attribution-NonCommercial-NoDerivs 3.0 Spain