Role of porosity and pore architecture in the in vivo bone regeneration capacity of biodegradable glass scaffolds
View/Open
jbma34845.pdf (546,3Kb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Document typeArticle
Defense date2014-06-01
Rights accessRestricted access - publisher's policy
Abstract
The aim of this work is to shed light on the role of porosity and pore architecture in the in vivo bone regeneration capacity of biodegradable glass scaffolds. A calcium phosphate glass in the system P2O5-CaO-Na2O-TiO2 was foamed using two different porogens, namely albumen and hydrogen peroxide (H2O2); the resulting three-dimensional porous structures were characterized and implanted in New Zealand rabbits to study their in vivo behavior. Scaffolds foamed with albumen displayed a monomodal pore size distribution centered around 150 m and a porosity of 82%, whereas scaffolds foamed with H2O2 showed lower porosity (37%), with larger elongated pores, and multimodal size distribution. After 12 weeks of implantation, histology results revealed a good osteointegration for both types of scaffolds. The quantitative morphometric analysis showed the substitution of the biomaterial by new bone in the case of glasses foamed with albumen. In contrast, bone neoformation and material resorption were significantly lower in the defects filled with the scaffolds foamed with H2O2. The results obtained in this study showed that both calcium phosphate glass scaffolds were osteoconductive, biocompatible, and biodegradable materials. However, differences in porosity, pore architecture, and microstructure led to substantially different in vivo response. (c) 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 102A: 1767-1773, 2014.
CitationSanzana, E. [et al.]. Role of porosity and pore architecture in the in vivo bone regeneration capacity of biodegradable glass scaffolds. "Journal of biomedical materials research. Part A", 01 Juny 2014, vol. 102, núm. 6, p. 1767-1773.
ISSN1549-3296
Publisher versionhttp://onlinelibrary.wiley.com/doi/10.1002/jbm.a.34845/pdf
Files | Description | Size | Format | View |
---|---|---|---|---|
jbma34845.pdf![]() | 546,3Kb | Restricted access |
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 3.0 Spain