Show simple item record

dc.contributor.authorRos Oton, Xavier
dc.contributor.authorSerra Montolí, Joaquim
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I
dc.date.accessioned2014-07-01T09:12:00Z
dc.date.available2014-07-01T09:12:00Z
dc.date.created2014-08-01
dc.date.issued2014-08-01
dc.identifier.citationRos, X.; Serra, J. The Pohozaev identity for the fractional Laplacian. "Archive for rational mechanics and analysis", 01 Agost 2014, vol. 213, núm. 2, p. 587-628.
dc.identifier.issn0003-9527
dc.identifier.urihttp://hdl.handle.net/2117/23348
dc.description.abstractIn this paper we prove the Pohozaev identity for the semilinear Dirichlet problem (-Delta)(s) u = f(u) in Omega, u equivalent to 0 in R-n\Omega. Here, s is an element of (0, 1), (-Delta)(s) is the fractional Laplacian in R-n, and Omega is a bounded C-1,C-1 domain. To establish the identity we use, among other things, that if u is a bounded solution then u/delta(s)vertical bar(Omega) is C-alpha up to the boundary partial derivative Omega, where delta(x) = dist(x, partial derivative Omega). In the fractional Pohozaev identity, the function u/delta(s)vertical bar(partial derivative Omega) plays the role that partial derivative u/partial derivative nu plays in the classical one. Surprisingly, from a nonlocal problem we obtain an identity with a boundary term (an integral over partial derivative Omega) which is completely local. As an application of our identity, we deduce the nonexistence of nontrivial solutions in star-shaped domains for supercritical nonlinearities.
dc.format.extent42 p.
dc.language.isoeng
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística
dc.subject.lcshPohozaev identity
dc.subject.lcshLaplace operator
dc.subject.lcshDirichlet problem
dc.subject.otherRegularity
dc.subject.otherEquations
dc.subject.otherBoundary
dc.titleThe Pohozaev identity for the fractional Laplacian
dc.typeArticle
dc.subject.lemacLaplacià
dc.subject.lemacDirichlet, Problema de
dc.identifier.doi10.1007/s00205-014-0740-2
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttp://link.springer.com/article/10.1007%2Fs00205-014-0740-2
dc.rights.accessOpen Access
local.identifier.drac14948248
dc.description.versionPreprint
local.citation.authorRos, X.; Serra, J.
local.citation.publicationNameArchive for rational mechanics and analysis
local.citation.volume213
local.citation.number2
local.citation.startingPage587
local.citation.endingPage628


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record