dc.contributor.author | Ros Oton, Xavier |
dc.contributor.author | Serra Montolí, Joaquim |
dc.contributor.other | Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I |
dc.date.accessioned | 2014-07-01T09:12:00Z |
dc.date.available | 2014-07-01T09:12:00Z |
dc.date.created | 2014-08-01 |
dc.date.issued | 2014-08-01 |
dc.identifier.citation | Ros, X.; Serra, J. The Pohozaev identity for the fractional Laplacian. "Archive for rational mechanics and analysis", 01 Agost 2014, vol. 213, núm. 2, p. 587-628. |
dc.identifier.issn | 0003-9527 |
dc.identifier.uri | http://hdl.handle.net/2117/23348 |
dc.description.abstract | In this paper we prove the Pohozaev identity for the semilinear Dirichlet problem (-Delta)(s) u = f(u) in Omega, u equivalent to 0 in R-n\Omega. Here, s is an element of (0, 1), (-Delta)(s) is the fractional Laplacian in R-n, and Omega is a bounded C-1,C-1 domain.
To establish the identity we use, among other things, that if u is a bounded solution then u/delta(s)vertical bar(Omega) is C-alpha up to the boundary partial derivative Omega, where delta(x) = dist(x, partial derivative Omega). In the fractional Pohozaev identity, the function u/delta(s)vertical bar(partial derivative Omega) plays the role that partial derivative u/partial derivative nu plays in the classical one. Surprisingly, from a nonlocal problem we obtain an identity with a boundary term (an integral over partial derivative Omega) which is completely local.
As an application of our identity, we deduce the nonexistence of nontrivial solutions in star-shaped domains for supercritical nonlinearities. |
dc.format.extent | 42 p. |
dc.language.iso | eng |
dc.subject | Àrees temàtiques de la UPC::Matemàtiques i estadística |
dc.subject.lcsh | Pohozaev identity |
dc.subject.lcsh | Laplace operator |
dc.subject.lcsh | Dirichlet problem |
dc.subject.other | Regularity |
dc.subject.other | Equations |
dc.subject.other | Boundary |
dc.title | The Pohozaev identity for the fractional Laplacian |
dc.type | Article |
dc.subject.lemac | Laplacià |
dc.subject.lemac | Dirichlet, Problema de |
dc.identifier.doi | 10.1007/s00205-014-0740-2 |
dc.description.peerreviewed | Peer Reviewed |
dc.relation.publisherversion | http://link.springer.com/article/10.1007%2Fs00205-014-0740-2 |
dc.rights.access | Open Access |
local.identifier.drac | 14948248 |
dc.description.version | Preprint |
local.citation.author | Ros, X.; Serra, J. |
local.citation.publicationName | Archive for rational mechanics and analysis |
local.citation.volume | 213 |
local.citation.number | 2 |
local.citation.startingPage | 587 |
local.citation.endingPage | 628 |