Semiring-based mini-bucket partitioning schemes
View/Open
Article principal (572,1Kb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Document typeConference report
Defense date2013
PublisherAAAI Press. Association for the Advancement of Artificial Intelligence
Rights accessRestricted access - publisher's policy
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
Graphical models are one of the most prominent frameworks to model complex systems and efficiently query them. Their underlying algebraic properties are captured by a valuation structure that, most usually, is a semiring. Depending on the semiring of choice, we can capture probabilistic models, constraint networks, cost networks, etc. In this paper we address the partitioning problem which occurs in many approximation techniques such as mini-bucket elimination and join-graph propagation algorithms. Roghly speaking, subject to complexity bounds, the algorithm needs to find a partition of a set of factors such that best approximates the whole set. While this problem has been addressed in the past in a particular case, we present here a general description. Furthermore, we also propose a general partitioning scheme. Our proposal is general in the sense that it is presented
in terms of a generic semiring with the only additional requirements of a division operation and a refinement of its order. The proposed algorithm instantiates to the particular task of computing the
probability of evidence, but also applies directly to other important reasoning tasks. We demonstrate its good empirical behaviour on the problem of computing the most probable explanation.
CitationRollón, E.; Larrosa, J.; Dechter, R. Semiring-based mini-bucket partitioning schemes. A: International Joint Conference on Artificial Intelligence. "23rd International Joint Conference on Artificial Intelligence". Beijing: AAAI Press. Association for the Advancement of Artificial Intelligence, 2013, p. 644-650.
ISBN978-1-57735-633-2
Publisher versionhttp://dl.acm.org/citation.cfm?id=2540222
Files | Description | Size | Format | View |
---|---|---|---|---|
IJCAI13-102.pdf![]() | Article principal | 572,1Kb | Restricted access |