Show simple item record

dc.contributor.authorShardomin Simao, Jose Pedro
dc.contributor.authorRameshan, Navaneeth
dc.contributor.authorVeiga, Luis
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors
dc.identifier.citationShardomin, J.; Rameshan, N.; Veiga, L. Resource-aware scaling of multi-threaded Java applications in multi-tenancy scenarios. A: IEEE International Conference on Cloud Computing Technology and Science. "IEEE Fifth International Conference on Cloud Computing Technology and Science: 2–5 December 2013, Bristol, United Kingdom: proceedings". Bristol: IEEE Computer Society Publications, 2013, p. 445-451.
dc.description.abstractCloud platforms are becoming more prevalent in every computational domain, particularly in e-Science. A typical scientific workload will have a long execution time or be data intensive. Providing an execution environment for these applications, which belong to different tenants, has to deal with the horizontal scaling of execution flows (i.e. threads) and an effective allocation of resources that takes into account the effective progress made by each tenant. While this is trivial for Bag-of-Tasks and embarrassingly parallel jobs, it is hard for HPC single-process multi-threaded applications because they cannot be scaled up automatically just by adding more virtual machines to execute the workload. In this paper we present MengTian, a distributed execution environment or platform capable of addressing the issues above. It encompasses several extensions to the Java execution environment, ranging from middleware to the virtual machine code and libraries. Our Java-based platform provides a Single System Image abstraction supported by a Partially Global Address Space to transparently spawn threads across a cluster of machines. It monitors progress with different levels-of-detail and accounts and restricts resource consumption. The overall goal is to redistribute resources among different JVM instances, increasing the unitary outcome of the progress vs. resource usage ratio over time.
dc.format.extent7 p.
dc.publisherIEEE Computer Society Publications
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.subjectÀrees temàtiques de la UPC::Informàtica::Programació
dc.subject.lcshCloud computing
dc.subject.lcshJava (Computer program language)
dc.subject.otherManaged runtimes
dc.subject.otherProgress monitoring
dc.subject.otherResource scheduling
dc.titleResource-aware scaling of multi-threaded Java applications in multi-tenancy scenarios
dc.typeConference report
dc.subject.lemacComputació en núvol
dc.subject.lemacJava (Llenguatge de programació)
dc.contributor.groupUniversitat Politècnica de Catalunya. CNDS - Xarxes de Computadors i Sistemes Distribuïts
dc.description.peerreviewedPeer Reviewed
dc.rights.accessRestricted access - publisher's policy
dc.description.versionPostprint (published version)
local.citation.authorShardomin, J.; Rameshan, N.; Veiga, L.
local.citation.contributorIEEE International Conference on Cloud Computing Technology and Science
local.citation.publicationNameIEEE Fifth International Conference on Cloud Computing Technology and Science: 2–5 December 2013, Bristol, United Kingdom: proceedings

Files in this item


This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain