Mostra el registre d'ítem simple

dc.contributor.authorEsque de los Ojos, Daniel
dc.contributor.authorOcenášek, J.
dc.contributor.authorAlcalá Cabrelles, Jorge
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Ciència dels Materials i Enginyeria Metal·lúrgica
dc.date.accessioned2014-05-21T08:23:39Z
dc.date.created2014-04-15
dc.date.issued2014-04-15
dc.identifier.citationEsque-de los Ojos, D.; Ocenášek, J.; Alcala, J. Sharp indentation crystal plasticity finite element simulations: Assessment of crystallographic anisotropy effects on the mechanical response of thin fcc single crystalline films. "Computational materials science", 15 Abril 2014, vol. 86, p. 186-192.
dc.identifier.issn0927-0256
dc.identifier.urihttp://hdl.handle.net/2117/23024
dc.description.abstractContinuum crystal plasticity finite element modeling has been used to address size-effects during indentation of thin-metallic films. Berkovich indentation simulations were performed in the frame of continuum crystal plasticity to study the influence of a rigid fcc single-crystalline silicon substrate on a soft thin-metallic copper fcc single crystal film with different crystallographic orientations. It has been observed that crystallographic orientation of the indented plane has a great influence on the penetration depth at which substrate effects come into play, particularly in terms of hardness evolution. This effect has been related to the spatial arrangement of the active slip systems and the consequent plastic flow towards the substrate. In fcc crystals, indented planes that favor plastic flow along the indentation axis, such as (011) and (111) planes, are more sensitive than those in which plastic flow is favored perpendicular to the indentation axis, like (001) plane. In addition, evolution of the indentation modulus in terms of the ratio of penetrated film (penetration depth divided by film thickness) has been studied for different crystallographic orientations, showing that extrapolating the indentation modulus value from zero penetration depth reaches the same value as that found in bulk single crystals. However, indentation modulus increases linearly after the first contact, due to the elastic response of the thin films being influenced by the substrate stiffness at all penetration depths. Differences in load-displacement curves for bulk single crystals and thin, single crystalline films are justified by the elastic contrast between films and the substrate on which they are deposited. (C) 2014 Elsevier B.V. All rights reserved.
dc.format.extent7 p.
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Enginyeria dels materials
dc.subject.lcshFinite element method--Data processing
dc.subject.lcshCrystals--Plastic properties
dc.subject.otherContinuum crystal plasticity
dc.subject.otherFinite element simulations
dc.subject.otherThin films
dc.subject.otherYoung modulus
dc.subject.otherNanoindentation
dc.subject.otherSubstrate effects
dc.subject.otherHardness evolutions
dc.subject.otherPYRAMIDAL INDENTATION
dc.subject.otherELASTIC PROPERTIES
dc.subject.otherFORCE MICROSCOPE
dc.subject.otherPOP-IN
dc.subject.otherNANOINDENTATION
dc.subject.otherSUBSTRATE
dc.subject.otherHARDNESS
dc.subject.otherMICROMECHANICS
dc.subject.otherDEPENDENCE
dc.subject.otherINDENTER
dc.titleSharp indentation crystal plasticity finite element simulations: Assessment of crystallographic anisotropy effects on the mechanical response of thin fcc single crystalline films
dc.typeArticle
dc.subject.lemacAssaigs de materials
dc.subject.lemacElements finits, Mètode dels
dc.subject.lemacCristalls -- Propietats plàstiques
dc.contributor.groupUniversitat Politècnica de Catalunya. GRICCA - Grup Interdepartamental per a la Col.laboració Científica Aplicada
dc.identifier.doi10.1016/j.commatsci.2014.01.064
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttp://www.sciencedirect.com/science/article/pii/S0927025614000822#
dc.rights.accessRestricted access - publisher's policy
local.identifier.drac14844469
dc.description.versionPostprint (published version)
dc.date.lift10000-01-01
local.citation.authorEsque-de los Ojos, D.; Ocenášek, J.; Alcala, J.
local.citation.publicationNameComputational materials science
local.citation.volume86
local.citation.startingPage186
local.citation.endingPage192


Fitxers d'aquest items

Imatge en miniatura

Aquest ítem apareix a les col·leccions següents

Mostra el registre d'ítem simple