Large scale air pollution estimation method combining land use regression and chemical transport modeling in a geostatistical framework

Cita com:
hdl:2117/23014
Document typeArticle
Defense date2014-04-15
Rights accessOpen Access
This work is protected by the corresponding intellectual and industrial property rights.
Except where otherwise noted, its contents are licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
In recognition that intraurban exposure gradients may be as large as between-city variations, recent air pollution epidemiologic studies have become increasingly interested in capturing within-city exposure gradients. In addition, because of the rapidly accumulating health data, recent studies also need to handle large study populations distributed over large geographic domains. Even though several modeling approaches have been introduced, a consistent modeling framework capturing within-city exposure variability and applicable to large geographic domains is still missing. To address these needs, we proposed a modeling framework based on the Bayesian Maximum Entropy method that integrates monitoring data and outputs from existing air quality models based on Land Use Regression (LUR) and Chemical Transport Models (CTM). The framework was applied to estimate the yearly average NO2 concentrations over the region of Catalunya in Spain. By jointly accounting for the global scale variability in the concentration from the output of CTM and the intraurban scale variability through LUR model output, the proposed framework outperformed more conventional approaches.
CitationAkita, Y. [et al.]. Large scale air pollution estimation method combining land use regression and chemical transport modeling in a geostatistical framework. "Environmental science and technology", 15 Abril 2014, vol. 48, núm. 8, p. 4452-4459.
ISSN0013-936X
Publisher versionhttp://pubs.acs.org/doi/full/10.1021/es405390e
Files | Description | Size | Format | View |
---|---|---|---|---|
largescaleairpo ... thodcombininglurandctm.pdf | 1,968Mb | View/Open |