Show simple item record

dc.contributor.authorO'Carroll, Liam
dc.contributor.authorPlanas Vilanova, Francesc d'Assís
dc.contributor.authorVillarreal Rodríguez, Rafael Heraclio
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I
dc.date.accessioned2014-05-16T08:09:45Z
dc.date.available2014-05-16T08:09:45Z
dc.date.created2014-01-01
dc.date.issued2014-01-01
dc.identifier.citationO'Carroll, L.; Planas, F. A.; Villarreal, R. Degree and algebraic properties of lattice and matrix ideals. "SIAM journal on discrete mathematics", 01 Gener 2014, vol. 28, núm. 1, p. 394-427.
dc.identifier.issn0895-4801
dc.identifier.urihttp://hdl.handle.net/2117/23006
dc.description.abstractWe study the degree of nonhomogeneous lattice ideals over arbitrary fields, and give formulas to compute the degree in terms of the torsion of certain factor groups of Z(s) and in terms of relative volumes of lattice polytopes. We also study primary decompositions of lattice ideals over an arbitrary field using the Eisenbud-Sturmfels theory of binomial ideals over algebraically closed fields. We then use these results to study certain families of integer matrices (positive critical binomial (PCB), generalized positive critical binomial (GPCB), critical binomial (CB), and generalized critical binomial (GCB) matrices) and the algebra of their corresponding matrix ideals. In particular, the family of GPCB matrices is shown to be closed under transposition, and previous results for PCB ideals are extended to GPCB ideals. Then, more particularly, we give some applications to the theory of 1-dimensional binomial ideals. If G is a connected graph, we show as a further application that the order of its sandpile group is the degree of the Laplacian ideal and the degree of the toppling ideal. We also use our earlier results to give a structure theorem for graded lattice ideals of dimension 1 in 3 variables and for homogeneous lattices in Z(3) in terms of CB ideals and CB matrices, respectively, thus complementing a well-known theorem of Herzog on the toric ideal of a monomial space curve.
dc.format.extent34 p.
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística
dc.subject.otherlattice ideal
dc.subject.othergraded binomial ideal
dc.subject.otherdegree
dc.subject.otherprimary decomposition
dc.subject.otherPCB ideal
dc.subject.otherBINOMIAL IDEALS
dc.subject.otherGRAPHS
dc.titleDegree and algebraic properties of lattice and matrix ideals
dc.typeArticle
dc.contributor.groupUniversitat Politècnica de Catalunya. EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions
dc.identifier.doi10.1137/130922094
dc.description.peerreviewedPeer Reviewed
dc.subject.amsClassificació AMS::13 Commutative rings and algebras::13F Arithmetic rings and other special rings
dc.subject.amsClassificació AMS::13 Commutative rings and algebras::13A General commutative ring theory
dc.subject.amsClassificació AMS::13 Commutative rings and algebras::13H Local rings and semilocal rings
dc.subject.amsClassificació AMS::13 Commutative rings and algebras::13P Computational aspects of commutative algebra
dc.relation.publisherversionhttp://epubs.siam.org/doi/abs/10.1137/130922094
dc.rights.accessOpen Access
local.identifier.drac14370042
dc.description.versionPostprint (published version)
local.citation.authorO'Carroll, L.; Planas, F. A.; Villarreal, R.
local.citation.publicationNameSIAM journal on discrete mathematics
local.citation.volume28
local.citation.number1
local.citation.startingPage394
local.citation.endingPage427


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain