Show simple item record

dc.contributor.authorEmken, Jeremy L.
dc.contributor.authorBenítez Iglesias, Raúl
dc.contributor.authorReinkensmeyer, David J.
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial
dc.date.accessioned2014-04-30T12:05:06Z
dc.date.available2014-04-30T12:05:06Z
dc.date.created2007-03-31
dc.date.issued2007-03-31
dc.identifier.citationEmken, J. L.; Benitez, R.; Reinkensmeyer, D.J. (2007). Human-robot cooperative movement training: learning a novel sensory motor transformation during walking with robotic assistance-as-needed. Journal of NeuroEngineering and Rehabilitation, 4 (8): 1-16. ISSN:1743-0003
dc.identifier.issn1743-0003
dc.identifier.urihttp://hdl.handle.net/2117/22786
dc.description.abstractBackground A prevailing paradigm of physical rehabilitation following neurologic injury is to "assist-as-needed" in completing desired movements. Several research groups are attempting to automate this principle with robotic movement training devices and patient cooperative algorithms that encourage voluntary participation. These attempts are currently not based on computational models of motor learning. Methods Here we assume that motor recovery from a neurologic injury can be modelled as a process of learning a novel sensory motor transformation, which allows us to study a simplified experimental protocol amenable to mathematical description. Specifically, we use a robotic force field paradigm to impose a virtual impairment on the left leg of unimpaired subjects walking on a treadmill. We then derive an "assist-as-needed" robotic training algorithm to help subjects overcome the virtual impairment and walk normally. The problem is posed as an optimization of performance error and robotic assistance. The optimal robotic movement trainer becomes an error-based controller with a forgetting factor that bounds kinematic errors while systematically reducing its assistance when those errors are small. As humans have a natural range of movement variability, we introduce an error weighting function that causes the robotic trainer to disregard this variability. Results We experimentally validated the controller with ten unimpaired subjects by demonstrating how it helped the subjects learn the novel sensory motor transformation necessary to counteract the virtual impairment, while also preventing them from experiencing large kinematic errors. The addition of the error weighting function allowed the robot assistance to fade to zero even though the subjects' movements were variable. We also show that in order to assist-as-needed, the robot must relax its assistance at a rate faster than that of the learning human. Conclusion The assist-as-needed algorithm proposed here can limit error during the learning of a dynamic motor task. The algorithm encourages learning by decreasing its assistance as a function of the ongoing progression of movement error. This type of algorithm is well suited for helping people learn dynamic tasks for which large kinematic errors are dangerous or discouraging, and thus may prove useful for robot-assisted movement training of walking or reaching following neurologic injury.
dc.format.extent1-16
dc.language.isoeng
dc.publisherBioMed Central Ltd.
dc.subjectÀrees temàtiques de la UPC::Informàtica::Robòtica
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica aplicada a les ciències
dc.subject.lcshAlgorithms
dc.subject.otherRobotics
dc.subject.otherPatient cooperative algorithms
dc.titleHuman-robot cooperative movement training: learning a novel sensory motor transformation during walking with robotic assistance-as-needed
dc.typeArticle
dc.subject.lemacAlgorismes
dc.contributor.groupUniversitat Politècnica de Catalunya. NOLIN - Física No-Lineal i Sistemes Fora de l'Equilibri
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttp://www.jneuroengrehab.com/content/4/1/8
dc.rights.accessOpen Access
dc.description.versionPostprint (published version)
dc.identifier.pmid17391527


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder