A first approximation in order to define a Difficulty Factor of the bi-classification in a dataset by using SVMs

View/Open
Document typeConference lecture
Defense date2013
Rights accessOpen Access
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
The main aim in this paper is to analyze the complexity of a Support Vector Machine -SVM- in the construction of a classifier for a bi-classification problem on a specific dataset. Hence, an index is defined in terms of both, the Lagrange multipliers and the number of support vectors. Experimentation for cheching the defined index is carried out with a well.known dataset, the Glass Identification Database.
CitationGonzalez-Abril, L.; Angulo, C. A first approximation in order to define a Difficulty Factor of the bi-classification in a dataset by using SVMs. A: Jornadas de ARCA. "Actas de las XV Jornadas de ARCA : Sistemas cualitativos y sus aplicaciones en diagnosis, robótica e inteligencia ambiental". Murcia: 2013, p. 45-48.
DLSE 546-2014
ISBN978-84-616-7622-4
Files | Description | Size | Format | View |
---|---|---|---|---|
jarca2013_45_48.pdf | 4,696Mb | View/Open |