Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
59.734 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • GPI - Grup de Processament d'Imatge i Vídeo
  • Ponències/Comunicacions de congressos
  • View Item
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • GPI - Grup de Processament d'Imatge i Vídeo
  • Ponències/Comunicacions de congressos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Measures and meta-measures for the supervised evaluation of image segmentation

Thumbnail
View/Open
Measures and meta-measures for the supervised evaluation of image segmentation (909,2Kb)
Share:
 
 
10.1109/CVPR.2013.277
 
  View Usage Statistics
Cita com:
hdl:2117/22498

Show full item record
Pont Tuset, Jordi
Marqués Acosta, FernandoMés informacióMés informacióMés informació
Document typeConference report
Defense date2013
PublisherIEEE Computer Society Publications
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
This paper tackles the supervised evaluation of image segmentation algorithms. First, it surveys and structures the measures used to compare the segmentation results with a ground truth database, and proposes a new measure: the precision-recall for objects and parts. To compare the goodness of these measures, it defines three quantitative meta-measures involving six state of the art segmentation methods. The meta-measures consist in assuming some plausible hypotheses about the results and assessing how well each measure reflects these hypotheses. As a conclusion, this paper proposes the precision-recall curves for boundaries and for objects-and-parts as the tool of choice for the supervised evaluation of image segmentation. We make the datasets and code of all the measures publicly available.
CitationPont, J.; Marques, F. Measures and meta-measures for the supervised evaluation of image segmentation. A: IEEE Conference on Computer Vision and Pattern Recognition. "CVRP 2013: 2013 IEEE Conference on Computer Vision and Pattern Recognition: proceedings: 23-28 June 2013: Portland, Oregon, USA". Portland, Oregon: IEEE Computer Society Publications, 2013, p. 2131-2138. 
URIhttp://hdl.handle.net/2117/22498
DOI10.1109/CVPR.2013.277
ISBN978-0-7695-4989-7
Publisher versionhttp://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6619121&tag=1
Collections
  • GPI - Grup de Processament d'Imatge i Vídeo - Ponències/Comunicacions de congressos [317]
  • Departament de Teoria del Senyal i Comunicacions - Ponències/Comunicacions de congressos [3.230]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
Measures and me ... of image segmentation.pdfMeasures and meta-measures for the supervised evaluation of image segmentation909,2KbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina