dc.contributor.author Acosta Humánez, Primitivo Belén dc.contributor.author Blázquez Sanz, David dc.contributor.author Vargas Contreras, Camilo dc.contributor.other Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada II dc.date.accessioned 2008-09-02T13:44:08Z dc.date.available 2008-09-02T13:44:08Z dc.date.issued 2008-08 dc.identifier.citation Acosta-Humánez, P.; Blazquez-Sanz, D.; Vargas Contreras, C. \emph{On Hamiltonian potentials with cuartic polynomial normal variational equations}; Dynamic Systems and Applications dc.identifier.uri http://hdl.handle.net/2117/2234 dc.description.abstract Here we find the complete family of two degree of freedom classical Hamiltonians with invariant plane $\Gamma=\{q_2=p_2=0\}$ whose normal variational equation around integral curves in $\Gamma$ is a generically a Hill-Schr\"odinger equation with cuartic polynomial potential. In particular, these Hamiltonian form a family of non-integrable Hamiltonians through rational first integrals. dc.format.extent 11 p. dc.language.iso eng dc.rights Attribution-NonCommercial-NoDerivs 2.5 Spain dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/2.5/es/ dc.subject Àrees temàtiques de la UPC::Matemàtiques i estadística dc.subject.lcsh Hamiltonian systems dc.subject.lcsh Differential algebra dc.subject.lcsh Difference algebra dc.subject.lcsh Hamiltonian dynamical systems dc.subject.lcsh Lagrangian functions dc.subject.other Morales-Ramis theory dc.subject.other Hamiltonian system dc.subject.other non-integrability dc.subject.other normal variational equation dc.title On Hamiltonian potentials with cuartic polynomial normal variational equations dc.type Article dc.subject.lemac Hamilton, Sistemes de dc.subject.lemac Àlgebra diferencial dc.subject.lemac Lagrange, Funcions de dc.contributor.group Universitat Politècnica de Catalunya. EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions dc.description.peerreviewed Peer Reviewed dc.subject.ams Classificació AMS::37 Dynamical systems and ergodic theory::37J Finite-dimensional Hamiltonian, Lagrangian, contact, and nonholonomic systems dc.subject.ams Classificació AMS::12 Field theory and polynomials::12H Differential and difference algebra dc.subject.ams Classificació AMS::70 Mechanics of particles and systems::70H Hamiltonian and Lagrangian mechanics dc.rights.access Open Access local.personalitzacitacio true
﻿