The FEBEX benchmark test: case definition and comparison of modelling approaches
View/Open
Cita com:
hdl:2117/2221
Document typeArticle
Defense date2005
PublisherElsevier
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
The FEBEX (Full-scale Engineered Barriers Experiment in Crystalline Host Rock) ‘‘in situ’’ test was installed at the Grimsel Test
Site underground laboratory (Switzerland) and is a near-to-real scale simulation of the Spanish reference concept of deep geological
storage in crystalline host rock. A modelling exercise, aimed at predicting field behaviour, was divided in three parts. In Part A,
predictions for both the total water inflow to the tunnel as well as the water pressure changes induced by the boring of the tunnel
were required. In Part B, predictions for local field variables, such as temperature, relative humidity, stresses and displacements at
selected points in the bentonite barrier, and global variables, such as the total input power to the heaters were required. In Part C,
predictions for temperature, stresses, water pressures and displacements in selected points of the host rock were required. Ten
Modelling Teams from Europe, North America and Japan were involved in the analysis of the test. Differences among approaches
may be found in the constitutive models used, in the simplifications made to the balance equations and in the geometric symmetries
considered. Several aspects are addressed in the paper: the basic THM physical phenomena which dominate the test response are discussed, a comparison of different modelling results with actual measurements is presented and a discussion is given to explain the
performance of the various predictions.
CitationAlonso, E.E. [et al.]. The FEBEX benchmark test: case definition and comparison of modelling approaches. International Journal of Rock Mechanics and Minings Sciences (2005, vol. 42, no. 5-6, pp. 611-638).
ISSN1365-1609