Ensemble learning and hierarchical data representation for microarray classification
View/Open
06701647.pdf (241,5Kb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Document typeConference report
Defense date2013
PublisherInstitute of Electrical and Electronics Engineers (IEEE)
Rights accessRestricted access - publisher's policy
Abstract
The microarray data classification is an open and active research field. The development of more accurate algorithms is of great interest and many of the developed techniques can be straightforwardly applied in analyzing different kinds of omics data. In this work, an ensemble learning algorithm is applied within a classification framework that already got good predictive results. Ensemble techniques take individual experts, (i.e. classifiers), to combine them to improve the individual expert results with a voting scheme. In this case, a thinning algorithm is proposed which starts by using all the available experts and removes them one by one focusing on improving the ensemble vote. Two versions of a state of the art ensemble thinning algorithm have been tested and three key elements have been introduced to work with microarray data: the ensemble cohort definition, the nonexpert notion, which defines a set of excluded expert from the thinning process, and a rule to break ties in the thinning process. Experiments have been done on seven public datasets from the Microarray Quality Control study, MAQC. The proposed key elements have shown to be useful for the prediction performance and the studied ensemble technique shown to improve the state of the art results by producing classifiers with better predictions.
CitationBosio, M. [et al.]. Ensemble learning and hierarchical data representation for microarray classification. A: IEEE International Conference on Bioinformatics and Bioengineering. "BIBE 2013: 13th IEEE International Conference on BioInformatics and BioEngineering: Chania, Greece: November 10-13, 2013". Chania: Institute of Electrical and Electronics Engineers (IEEE), 2013, p. 1-4.
Publisher versionhttp://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6701647
Files | Description | Size | Format | View |
---|---|---|---|---|
06701647.pdf![]() | 241,5Kb | Restricted access |
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder