Show simple item record

dc.contributor.authorKostov, Belchin Adriyanov
dc.contributor.authorBécue Bertaut, Mónica María
dc.contributor.authorHusson, François
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Estadística i Investigació Operativa
dc.date.accessioned2014-03-12T13:04:40Z
dc.date.created2013
dc.date.issued2013
dc.identifier.citationKostov, B.; Becue, M.; Husson, F. MFACT, a new funcionality in MFA -FactoMineR. "R Journal", 2013, vol. 5, p. 29-38.
dc.identifier.issn2073-4859
dc.identifier.urihttp://hdl.handle.net/2117/22005
dc.description.abstractWe present multiple factor analysis for contingency tables (MFACT) and its implementation in the FactoMineR package. This method, through an option of the MFA function, allows us to deal with multiple contingency or frequency tables, in addition to the categorical and quantitative multiple tables already considered in previous versions of the package. Thanks to this revised function, either a multiple contingency table or a mixed multiple table integrating quantitative, categorical and frequency data can be tackled. The FactoMineR package (Lê et al., 2008; Husson et al., 2011) offers the most commonly used principal component methods: principal component analysis (PCA), correspondence analysis (CA; Benzécri, 1973), multiple correspondence analysis (MCA; Lebart et al., 2006) and multiple factor analysis (MFA; Escofier and Pagès, 2008). Detailed presentations of these methods enriched by numerous examples can be consulted at the website http://factominer.free.fr/. An extension of the MFA function that considers contingency or frequency tables as proposed by Bécue-Bertaut and Pagès (2004, 2008) is detailed in this article. First, an example is presented in order to motivate the approach. Next, the mortality data used to illustrate the method are introduced. Then we briefly describe multiple factor analysis (MFA) and present the principles of its extension to contingency tables. A real example on mortality data illustrates the handling of the MFA function to analyse these multiple tables and, finally, conclusions are presented.
dc.format.extent10 p.
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Investigació operativa::Optimització
dc.subject.lcshOperations research
dc.titleMFACT, a new funcionality in MFA -FactoMineR
dc.typeArticle
dc.subject.lemacOptimització i investigació operativa
dc.contributor.groupUniversitat Politècnica de Catalunya. LIAM - Laboratori de Modelització i Anàlisi de la Informació
dc.description.peerreviewedPeer Reviewed
dc.subject.ams90B Investigació operativa i ciències de l'administració i la direcció
dc.rights.accessRestricted access - publisher's policy
local.identifier.drac13441449
dc.description.versionPostprint (published version)
dc.date.lift10000-01-01
local.citation.authorKostov, B.; Becue, M.; Husson, F.
local.citation.publicationNameR Journal
local.citation.volume5
local.citation.startingPage29
local.citation.endingPage38


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain