Show simple item record

dc.contributor.authorAcosta Humánez, Primitivo Belén
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtica Aplicada II
dc.date.accessioned2008-07-31T10:49:45Z
dc.date.available2008-07-31T10:49:45Z
dc.date.issued2008-06
dc.identifier.urihttp://hdl.handle.net/2117/2198
dc.description.abstractIn this paper we present an approach towards the comprehensive analysis of the non-integrability of differential equations in the form $\ddot x=f(x,t)$ which is analogous to Hamiltonian systems with $1+1/2$ degree of freedom. In particular, we analyze the non-integrability of some important families of differential equations such as Painlevé II, Sitnikov and Hill-Schrödinger equation. We emphasize in Painlevé II, showing its non-integrability through three different Hamiltonian systems, and also in Sitnikov in which two different version including numerical results are shown. The main tool to study the non-integrability of these kind of Hamiltonian systems is Morales-Ramis theory. This paper is a very slight improvement of the talk with the same title delivered by the author in SIAM Conference on Applications of Dynamical Systems 2007.
dc.format.extent18 p.
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 2.5 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/es/
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística
dc.subject.lcshDifferential algebra
dc.subject.lcshHamiltonian systems
dc.subject.otherHill-Schrödinger equation
dc.subject.othervirtually abelian groups
dc.subject.otherMorales-Ramis theory
dc.subject.othernon-autonomous Hamiltonian systems
dc.subject.othernon-integrability of Hamiltonian systems
dc.subject.otherPainlevé II equation
dc.subject.otherSitnikov problem
dc.titleNon-autonomous hamiltonian systems and Morales-Ramis theory
dc.typeArticle
dc.subject.lemacÀlgebra diferencial
dc.subject.lemacHamilton, Sistemes de
dc.subject.lemacHamiltonian dynamical systems
dc.contributor.groupUniversitat Politècnica de Catalunya. EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions
dc.subject.amsClassificació AMS::12 Field theory and polynomials::12H Differential and difference algebra
dc.subject.amsClassificació AMS::37 Dynamical systems and ergodic theory::37J Finite-dimensional Hamiltonian, Lagrangian, contact, and nonholonomic systems
dc.subject.amsClassificació AMS::70 Mechanics of particles and systems::70H Hamiltonian and Lagrangian mechanics
dc.rights.accessOpen Access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Except where otherwise noted, content on this work is licensed under a Creative Commons license: Attribution-NonCommercial-NoDerivs 2.5 Spain