Show simple item record

dc.contributor.authorMorales Vilches, Ana Belén
dc.contributor.authorVoz Sánchez, Cristóbal
dc.contributor.authorColina Brito, Mónica Alejandra
dc.contributor.authorLópez Rodríguez, Gema
dc.contributor.authorMartín García, Isidro
dc.contributor.authorOrtega Villasclaras, Pablo Rafael
dc.contributor.authorOrpella García, Alberto
dc.contributor.authorAlcubilla González, Ramón
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Electrònica
dc.date.accessioned2014-02-10T15:23:32Z
dc.date.created2014-01-31
dc.date.issued2014-01-31
dc.identifier.citationMorales, A. [et al.]. Recovery of indium-tin-oxide/silicon heterojunction solar cells by thermal annealing. "Energy procedia", 31 Gener 2014, vol. 44, p. 3-9.
dc.identifier.issn1876-6102
dc.identifier.urihttp://hdl.handle.net/2117/21497
dc.description.abstractThe emitter of silicon heterojunction solar cells consists of very thin hydrogenated amorphous silicon layers deposited at low temperature. The high sheet resistance of this type of emitter requires a transparent conductive oxide layer, which also acts as an effective antireflection coating. The deposition of this front electrode, typically by Sputtering, involves a relatively high energy ion bombardment at the surface that could degrade the emitter quality. The work function of the transparent conductive oxide layer could also significantly modify the band structure at the emitter. In this work, we study the particular case of p-type crystalline silicon substrates with a stack of n-doped and intrinsic amorphous silicon layers deposited by Plasma-Enhanced Chemical Vapor Deposition. The front electrode was an indium-tin-oxide layer deposited by Sputtering. The Quasi-Steady-State Photoconductance technique has been used to characterize the emitter quality by measuring the effective lifetime and the implicit open-circuit voltage. These measurements confirmed a strong degradation of the heterojunction after depositing the indium-tin-oxide layer. However, it is also shown that the initial degradation could be completely recovered by an adequate thermal treatment. In this sense, annealing times from 10 to 90 minutes at temperatures ranging from 100 to 160 ºC have been studied, both in vacuum and inside an oven.
dc.format.extent7 p.
dc.language.isoeng
dc.subjectÀrees temàtiques de la UPC::Enginyeria electrònica::Microelectrònica
dc.subject.lcshSolar cells.
dc.subject.lcshSilicon solar cells.
dc.titleRecovery of indium-tin-oxide/silicon heterojunction solar cells by thermal annealing
dc.typeArticle
dc.subject.lemacEnergia solar -- Aparells i accessoris
dc.subject.lemacSemiconductors
dc.subject.lemacBateries solars
dc.subject.lemacSilici
dc.contributor.groupUniversitat Politècnica de Catalunya. MNT - Grup de Recerca en Micro i Nanotecnologies
dc.identifier.doi10.1016/j.egypro.2013.12.002
dc.relation.publisherversionhttp://www.sciencedirect.com/science/article/pii/S1876610213018158
dc.rights.accessRestricted access - publisher's policy
drac.iddocument13030298
dc.description.versionPostprint (published version)
dc.date.lift10000-01-01
upcommons.citation.authorMorales, A.; Voz, C.; Colina, M.A.; Lopez, G.; Martin, I.; Ortega, P.; Orpella, A.; Alcubilla, R.
upcommons.citation.publishedtrue
upcommons.citation.publicationNameEnergy procedia
upcommons.citation.volume44
upcommons.citation.startingPage3
upcommons.citation.endingPage9


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder