Modular abelian varieties over number fields
View/Open
Article principal (457,6Kb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Document typeArticle
Defense date2014
Rights accessRestricted access - publisher's policy
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
The main result of this paper is a characterization of the abelian varieties B=K defined over
Galois number fields with the property that the L-function L(B=K; s) is a product of L-functions of
non-CM newforms over Q for congruence subgroups of the form T1(N). The characterization involves
the structure of End(B), isogenies between the Galois conjugates of B, and a Galois cohomology
class attached to B=K.
We call the varieties having this property strongly modular. The last section is devoted to the study
of a family of abelian surfaces with quaternionic multiplication. As an illustration of the ways in which
the general results of the paper can be applied, we prove the strong modularity of some particular
abelian surfaces belonging to that family, and we show how to find nontrivial examples of strongly
modular varieties by twisting.
CitationGuitart, X.; Quer, J. Modular abelian varieties over number fields. "Canadian journal of mathematics. Journal canadien de mathématiques", 2014, vol. 66, núm. 1, p. 170-196.
ISSN0008-414X
Publisher versionhttp://cms.math.ca/10.4153/CJM-2012-040-2
Collections
Files | Description | Size | Format | View |
---|---|---|---|---|
guitartJ0800-guitartJ0800.pdf![]() | Article principal | 457,6Kb | Restricted access |