Mostra el registre d'ítem simple

dc.contributor.authorCaner, Ferhun Cem
dc.contributor.authorBažant, Zdeněk Pavel
dc.contributor.otherUniversitat Politècnica de Catalunya. Institut de Tècniques Energètiques
dc.date.accessioned2014-01-30T09:56:38Z
dc.date.created2013-12-01
dc.date.issued2013-12-01
dc.identifier.citationCaner, F.C.; Bazant, Z.P. Microplane model M7 for plain concrete. I: Formulation. "Journal of engineering mechanics", 01 Desembre 2013, vol. 139, núm. 12, p. 1724-1735.
dc.identifier.issn0733-9399
dc.identifier.urihttp://hdl.handle.net/2117/21405
dc.description.abstractMathematical modeling of the nonlinear triaxial behavior and damage of such a complexmaterial as concrete has been a long-standing challenge in which progress has been made only in gradual increments. The goal of this study is a realistic and robust material model for explicit finite-element programs for concrete structures that computes the stress tensor from the given strain tensor and some history variables. Themicroplanemodels, which use a constitutive equation in a vectorial rather than tensorial form and are semimultiscale by virtue of capturing interactions among phenomena of different orientation, can serve this goal effectively. This paper presents a new concrete microplane model, M7, which achieves this goal much better than the previous versions M1–M6 developed at Northwestern University since 1985. The basic mathematical structure of M7 is logically correlated to thermodynamic potentials for the elastic regime, the tensile and compressive damage regimes, and the frictional slip regime.Given that the volumetric-deviatoric (V-D) split of strains is inevitable for distinguishing between compression failures at low and high confinement, the key idea is to apply the V-Dsplit only to the microplane compressive stress-strain boundaries (or strain-dependent yield limits), the sumof which is compared with the total normal stress from the microplane constitutive relation. This avoids the use of the V-D split of the elastic strains and of the tensile stress-strain boundary, which caused various troubles in M3–M6 such as excessive lateral strains and stress locking in far postpeak uniaxial extension, poor representation of unloading and loading cycles, and inability to represent high dilatancy under postpeak compression in lower-strength concretes. Moreover, the differences between high hydrostatic compression and compressive uniaxial strain are accurately captured by considering the compressive volumetric boundary as dependent on the principal strain difference. The model is verified extensively in the companion paper.
dc.format.extent12 p.
dc.language.isoeng
dc.publisherAmerican Society of Civil Engineers (ASCE)
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Edificació::Materials de construcció::Formigó
dc.subjectÀrees temàtiques de la UPC::Informàtica::Aplicacions de la informàtica::Aplicacions informàtiques a la física i l‘enginyeria
dc.subject.lcshConcrete
dc.subject.lcshAlgorithms
dc.subject.otherConstitutive models
dc.subject.otherInelasticity
dc.subject.otherCracking
dc.subject.otherDamage
dc.subject.otherConcrete
dc.subject.otherAlgorithms
dc.subject.otherMathematical models
dc.titleMicroplane model M7 for plain concrete. I: Formulation
dc.typeArticle
dc.subject.lemacFormigó
dc.subject.lemacAlgorismes
dc.identifier.doi10.1061/(ASCE)EM.1943-7889.0000570
dc.rights.accessRestricted access - publisher's policy
local.identifier.drac12967604
dc.description.versionPostprint (published version)
dc.date.lift10000-01-01
local.citation.authorCaner, F.C.; Bazant, Z.P.
local.citation.publicationNameJournal of engineering mechanics
local.citation.volume139
local.citation.number12
local.citation.startingPage1724
local.citation.endingPage1735


Fitxers d'aquest items

Imatge en miniatura

Aquest ítem apareix a les col·leccions següents

Mostra el registre d'ítem simple