Show simple item record

dc.contributor.authorDijkstra, Hendrik
dc.contributor.authorWubs, Fred W.
dc.contributor.authorCliffe, Andrew K.
dc.contributor.authorDoedel, Eusebius J.
dc.contributor.authorDragomirescu, Ioana Florica
dc.contributor.authorEckhardt, Bruno
dc.contributor.authorGelfgat, Alexander Yu
dc.contributor.authorHazel, Andrew L.
dc.contributor.authorLucarini, Valerio
dc.contributor.authorSalinger, Andrew G.
dc.contributor.authorPhipps, Erik T.
dc.contributor.authorSánchez Umbría, Juan
dc.contributor.authorSchuttelaars, Henk M.
dc.contributor.authorTuckerman, Laurette S.
dc.contributor.authorThiele, Uwe
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Física Aplicada
dc.date.accessioned2014-01-22T16:16:58Z
dc.date.created2014-01
dc.date.issued2014-01
dc.identifier.citationDijkstra, H. [et al.]. Numerical bifurcation methods and their application to fluid dynamics: analysis beyond simulation. "Communications in computational physics", Gener 2014, vol. 15, núm. 1, p. 1-45.
dc.identifier.issn1815-2406
dc.identifier.urihttp://hdl.handle.net/2117/21331
dc.description.abstractWe provide an overview of current techniques and typical applications of numerical bifurcation analysis in fluid dynamical problems. Many of these problems are characterized by high-dimensional dynamical systems which undergo transitions as parameters are changed. The computation of the critical conditions associated with these transitions, popularly referred to as 'tipping points', is important for understanding the transition mechanisms. We describe the two basic classes of methods of numerical bifurcation analysis, which differ in the explicit or implicit use of the Jacobian matrix of the dynamical system. The numerical challenges involved in both methods are mentioned and possible solutions to current bottlenecks are given. To demonstrate that numerical bifurcation techniques are not restricted to relatively low-dimensional dynamical systems, we provide several examples of the application of the modern techniques to a diverse set of fluid mechanical problems.
dc.format.extent45 p.
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Física
dc.subject.lcshFluid dynamics
dc.subject.lcshBifurcation theory
dc.subject.lcshFluid mechanics
dc.subject.lcshNumerical analysis
dc.subject.otherHigh-dimensional dynamical systems
dc.subject.otherNumerical bifurcation analysis
dc.subject.otherTransitions in fluid flows
dc.titleNumerical bifurcation methods and their application to fluid dynamics: analysis beyond simulation
dc.typeArticle
dc.subject.lemacDinàmica de fluids
dc.subject.lemacBifurcació, Teoria de la
dc.subject.lemacMecànica de fluids
dc.subject.lemacAnàlisi numèrica
dc.contributor.groupUniversitat Politècnica de Catalunya. DF - Dinàmica No Lineal de Fluids
dc.identifier.doi10.4208/cicp.240912.180613a
dc.relation.publisherversionhttp://www.global-sci.com/readabs.php?vol=15&page=1&issue=1&ppage=45&year=2014
dc.rights.accessRestricted access - publisher's policy
local.identifier.drac12987426
dc.description.versionPostprint (published version)
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/FP7/257106/EU/Thermodynamics of the Climate System/NAMASTE
local.citation.authorDijkstra, H.; Wubs, F.; Cliffe, A.; Doedel, E.; Dragomirescu, I.; Eckhardt, B.; Gelfgat, A.Y.; Hazel, A.; Lucarini, V.; Salinger, A.; Phipps, E.; Sanchez, J.; Schuttelaars, H.; Tuckerman, L.; Thiele, U.
local.citation.publicationNameCommunications in computational physics
local.citation.volume15
local.citation.number1
local.citation.startingPage1
local.citation.endingPage45


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record