Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
61.603 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • (MC)2 - Grup de Mecànica Computacional en Medis Continus
  • Reports de recerca
  • View Item
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • (MC)2 - Grup de Mecànica Computacional en Medis Continus
  • Reports de recerca
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Block recursive LU preconditioners for the thermally coupled incompressible inductionless MHD problem

Thumbnail
View/Open
Article (1,769Mb)
  View Usage Statistics
  LA Referencia / Recolecta stats
Cita com:
hdl:2117/21229

Show full item record
Badia, SantiagoMés informacióMés informació
Martín Huertas, Alberto FranciscoMés informació
Planas Badenas, RamonMés informació
Document typeResearch report
Defense date2013
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
The thermally coupled incompressible inductionless magnetohydrodynamics (MHD) problem models the ow of an electrically charged fuid under the in uence of an external electromagnetic eld with thermal coupling. This system of partial di erential equations is strongly coupled and highly nonlinear for real cases of interest. Therefore, fully implicit time integration schemes are very desirable in order to capture the di erent physical scales of the problem at hand. However, solving the multiphysics linear systems of equations resulting from such algorithms is a very challenging task which requires e cient and scalable preconditioners. In this work, a new family of recursive block LU preconditioners is designed and tested for solving the thermally coupled inductionless MHD equations. These preconditioners are obtained after splitting the fully coupled matrix into one-physics problems for every variable (velocity, pressure, current density, electric potential and temperature) that can be optimally solved, e.g., using preconditioned domain decomposition algorithms. The main idea is to arrange the original matrix into an (arbitrary) 2 2 block matrix, and consider a LU preconditioner obtained by approximating the corresponding Schur complement. For every one of the diagonal blocks in the LU preconditioner, if it involves more than one type of unknown, we proceed the same way in a recursive fashion. This approach is stated in an abstract way, and can be straightforwardly applied to other multiphysics problems. Further, we precisely explain a fexible and general software design for the code implementation of this type of preconditioners.
CitationBadia, S.; Martín, A. F.; Planas, R. "Block recursive LU preconditioners for the thermally coupled incompressible inductionless MHD problem". 2013. 
URIhttp://hdl.handle.net/2117/21229
URL other repositoryhttp://badia.rmee.upc.edu/docs/badia/art039.pdf
Collections
  • (MC)2 - Grup de Mecànica Computacional en Medis Continus - Reports de recerca [17]
  • Departament de Resistència de Materials i Estructures a l'Enginyeria - Reports de recerca [99]
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
art006_sub.pdfArticle1,769MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina