Low dispersive modeling of Rayleigh waves on partly staggered grids
View/Open
Low dispersive modeling of Rayleigh waves on partly (594,6Kb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/21220
Document typeArticle
Defense date2013-10-01
Rights accessRestricted access - publisher's policy
Abstract
In elastic media, finite-difference (FD) implementations of free-surface (FS) boundary conditions on partly staggered grid (PSG) use the highly dispersive vacuum formulation (VPSG). The FS boundary is embedded into a “vacuum” grid layer (null Lame’s constants and negligible density values) where the discretized equations of motion allow computing surface displacements. We place a new set of compound (stress-displacement) nodes along a planar FS and use unilateral mimetic FD discretization of the zero-traction conditions for displacement computation (MPSG). At interior nodes, MPSG reduces to standard VPSG methods and applies fourth-order centered FD along cell diagonals for staggered differentiation combined with nodal second-order FD in time. We perform a dispersion analysis of these methods on a Lamb’s problem and estimate dispersion curves from the phase difference of windowed numerical Rayleigh pulses at two FS receivers. For a given grid sampling criterion (e.g., six or ten nodes per reference S wavelength ¿ S), MPSG dispersion errors are only a quarter of the VPSG method. We also quantify root-mean-square (RMS) misfits of numerical time series relative to analytical waveforms. MPSG RMS misfits barely exceed 10 % when nine nodes sample the minimum S wavelength ¿SMIN in transit (along distances ~ 145 ¿SMIN ). In same tests, VPSG RMS misfits exceed 70 %. We additionally compare MPSG to a consistently fourth-order mimetic method designed on a standard staggered grid. The latter equates the former’s dispersion errors on grids twice denser and shows higher RMS precision only on grids with six or less nodes per ¿SMIN .
CitationRojas, O. [et al.]. Low dispersive modeling of Rayleigh waves on partly staggered grids. "Computational geosciences", 01 Octubre 2013, p. 1-17.
ISSN1420-0597
Publisher versionhttp://link.springer.com/article/10.1007/s10596-013-9380-0
Files | Description | Size | Format | View |
---|---|---|---|---|
Low dispersive ... yleigh waves on partly.pdf![]() | Low dispersive modeling of Rayleigh waves on partly | 594,6Kb | Restricted access |
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 3.0 Spain