Unsupervised spectral learning of finite-state transducers
dc.contributor.author | Bailly, Raphaël |
dc.contributor.author | Carreras Pérez, Xavier |
dc.contributor.author | Quattoni, Ariadna Julieta |
dc.contributor.other | Universitat Politècnica de Catalunya. Departament de Llenguatges i Sistemes Informàtics |
dc.date.accessioned | 2013-12-20T11:42:49Z |
dc.date.available | 2013-12-20T11:42:49Z |
dc.date.created | 2012 |
dc.date.issued | 2012 |
dc.identifier.citation | Bailly, R.; Carreras, X.; Quattoni, A.J. Unsupervised spectral learning of finite-state transducers. A: Neural Information Processing Systems Conference. "Advances in Neural Information Processing Systems 26". Lake Tahoe, Nevada: 2012, p. 800-808. |
dc.identifier.uri | http://hdl.handle.net/2117/21077 |
dc.description.abstract | Finite-State Transducers (FST) are a standard tool for modeling paired inputoutput sequences and are used in numerous applications, ranging from computational biology to natural language processing. Recently Balle et al. presented a spectral algorithm for learning FST from samples of aligned input-output sequences. In this paper we address the more realistic, yet challenging setting where the alignments are unknown to the learning algorithm. We frame FST learning as finding a low rank Hankel matrix satisfying constraints derived from observable statistics. Under this formulation, we provide identifiability results for FST distributions. Then, following previous work on rank minimization, we propose a regularized convex relaxation of this objective which is based on minimizing a nuclear norm penalty subject to linear constraints and can be solved efficiently. |
dc.format.extent | 9 p. |
dc.language.iso | eng |
dc.subject | Àrees temàtiques de la UPC::Informàtica::Intel·ligència artificial::Llenguatge natural |
dc.subject.lcsh | Finite-state transducers |
dc.subject.other | Finite State Transducers Spectral Learning |
dc.title | Unsupervised spectral learning of finite-state transducers |
dc.type | Conference report |
dc.subject.lemac | Transductors d'estats finits |
dc.contributor.group | Universitat Politècnica de Catalunya. GPLN - Grup de Processament del Llenguatge Natural |
dc.contributor.group | Universitat Politècnica de Catalunya. LARCA - Laboratori d'Algorísmia Relacional, Complexitat i Aprenentatge |
dc.description.peerreviewed | Peer Reviewed |
dc.relation.publisherversion | http://papers.nips.cc/book/advances-in-neural-information-processing-systems-26-2013 |
dc.rights.access | Open Access |
local.identifier.drac | 12943366 |
dc.description.version | Postprint (author’s final draft) |
local.citation.author | Bailly, R.; Carreras, X.; Quattoni, A.J. |
local.citation.contributor | Neural Information Processing Systems Conference |
local.citation.pubplace | Lake Tahoe, Nevada |
local.citation.publicationName | Advances in Neural Information Processing Systems 26 |
local.citation.startingPage | 800 |
local.citation.endingPage | 808 |
Files in this item
This item appears in the following Collection(s)
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder