A public domain dataset for human activity recognition using smartphones
View/Open
Anguita et al.pdf (99,29Kb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Document typeConference report
Defense date2013
Rights accessRestricted access - publisher's policy
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
Human-centered computing is an emerging research field that aims to understand human behavior and integrate users and their social context with computer systems. One of the most recent, challenging and appealing applications in this framework consists in sensing human body motion using smartphones to gather context information about people actions. In this context, we describe in this work an Activity Recognition database, built from the recordings of 30 subjects doing Activities of Daily Living (ADL) while carrying a waist-mounted smartphone with embedded inertial sensors, which is released to public domain on a well-known on-line repository. Results, obtained on the dataset by exploiting a multiclass Support Vector
Machine (SVM), are also acknowledged.
CitationAnguita, D. [et al.]. A public domain dataset for human activity recognition using smartphones. A: European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. "Proceedings of the 21th International European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning". Bruges: 2013, p. 437-442.
ISBN978-2-87419-081-0
Publisher versionhttp://www.i6doc.com/en/livre/?GCOI=28001100131010
Files | Description | Size | Format | View |
---|---|---|---|---|
Anguita et al.pdf![]() | 99,29Kb | Restricted access |