A public domain dataset for human activity recognition using smartphones
Ver/Abrir
Anguita et al.pdf (99,29Kb) (Acceso restringido)
Solicitud de copia al autor
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Tipo de documentoTexto en actas de congreso
Fecha de publicación2013
Condiciones de accesoAcceso restringido por política de la editorial
Salvo que se indique lo contrario, los contenidos
de esta obra estan sujetos a la licencia de Creative Commons
:
Reconocimiento-NoComercial-SinObraDerivada 3.0 España
Resumen
Human-centered computing is an emerging research field that aims to understand human behavior and integrate users and their social context with computer systems. One of the most recent, challenging and appealing applications in this framework consists in sensing human body motion using smartphones to gather context information about people actions. In this context, we describe in this work an Activity Recognition database, built from the recordings of 30 subjects doing Activities of Daily Living (ADL) while carrying a waist-mounted smartphone with embedded inertial sensors, which is released to public domain on a well-known on-line repository. Results, obtained on the dataset by exploiting a multiclass Support Vector
Machine (SVM), are also acknowledged.
CitaciónAnguita, D. [et al.]. A public domain dataset for human activity recognition using smartphones. A: European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. "Proceedings of the 21th International European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning". Bruges: 2013, p. 437-442.
ISBN978-2-87419-081-0
Versión del editorhttp://www.i6doc.com/en/livre/?GCOI=28001100131010
Ficheros | Descripción | Tamaño | Formato | Ver |
---|---|---|---|---|
Anguita et al.pdf![]() | 99,29Kb | Acceso restringido |