Show simple item record

dc.contributor.authorCastejón i Company, Oriol
dc.contributor.authorGuillamon Grabolosa, Antoni
dc.contributor.authorHuguet Casades, Gemma
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I
dc.date.accessioned2013-12-03T08:48:15Z
dc.date.available2013-12-03T08:48:15Z
dc.date.created2013-08
dc.date.issued2013-08
dc.identifier.citationCastejon, O.; Guillamon, A.; Huguet, G. Phase-amplitude response functions for transient-state stimuli. "Journal of Mathematical Neuroscience", Agost 2013, vol. 3, núm. 1, p. 1-26.
dc.identifier.issn2190-8567
dc.identifier.urihttp://hdl.handle.net/2117/20887
dc.description.abstractThe phase response curve (PRC) is a powerful tool to study the effect of a perturbation on the phase of an oscillator, assuming that all the dynamics can be explained by the phase variable. However, factors like the rate of convergence to the oscillator, strong forcing or high stimulation frequency may invalidate the above assumption and raise the question of how is the phase variation away from an attractor. The concept of isochrons turns out to be crucial to answer this question; from it, we have built up Phase Response Functions (PRF) and, in the present paper, we complete the extension of advancement functions to the transient states by defining the Amplitude Response Function (ARF) to control changes in the transversal variables. Based on the knowledge of both the PRF and the ARF, we study the case of a pulse-train stimulus, and compare the predictions given by the PRC-approach (a 1D map) to those given by the PRF-ARF-approach (a 2D map); we observe differences up to two orders of magnitude in favor of the 2D predictions, especially when the stimulation frequency is high or the strength of the stimulus is large. We also explore the role of hyperbolicity of the limit cycle as well as geometric aspects of the isochrons. Summing up, we aim at enlightening the contribution of transient effects in predicting the phase response and showing the limits of the phase reduction approach to prevent from falling into wrong predictions in synchronization problems.
dc.format.extent26 p.
dc.language.isoeng
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica aplicada a les ciències
dc.subject.lcshNeurosciences -- Mathematical models
dc.titlePhase-amplitude response functions for transient-state stimuli
dc.typeArticle
dc.subject.lemacNeurociències -- Models matemàtics
dc.contributor.groupUniversitat Politècnica de Catalunya. EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions
dc.identifier.doi10.1186/2190-8567-3-13
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttp://www.mathematical-neuroscience.com/content/3/1/13
dc.rights.accessOpen Access
drac.iddocument12910115
dc.description.versionPostprint (published version)
upcommons.citation.authorCastejon, O.; Guillamon, A.; Huguet, G.
upcommons.citation.publishedtrue
upcommons.citation.publicationNameJournal of Mathematical Neuroscience
upcommons.citation.volume3
upcommons.citation.number1
upcommons.citation.startingPage1
upcommons.citation.endingPage26


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder