Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
59.728 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Energy efficient smartphone-based activity recognition using fixed-point arithmetic

Thumbnail
View/Open
jucs_19_09_1295_1314_anguita.pdf (371,5Kb)
Share:
 
  View Usage Statistics
Cita com:
hdl:2117/20437

Show full item record
Anguita, Davide
Ghio, Alessandro
Oneto, Luca
Llanas Parra, Francesc XavierMés informacióMés informacióMés informació
Reyes Ortiz, Jorge Luis
Document typeArticle
Defense date2013
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
In this paper we propose a novel energy efficient approach for the recognition of human activities using smartphones as wearable sensing devices, targeting assisted living applications such as remote patient activity monitoring for the disabled and the elderly. The method exploits fixed-point arithmetic to propose a modified multiclass Support Vector Machine (SVM) learning algorithm, allowing to better pre- serve the smartphone battery lifetime with respect to the conventional floating-point based formulation while maintaining comparable system accuracy levels. Experiments show comparative results between this approach and the traditional SVM in terms of recognition performance and battery consumption, highlighting the advantages of the proposed method.
CitationAnguita, D. [et al.]. Energy efficient smartphone-based activity recognition using fixed-point arithmetic. "Journal of universal computer science", 2013, vol. 19, núm. 9, p. 1295-1314. 
URIhttp://hdl.handle.net/2117/20437
ISSN0948-695X
Publisher versionhttp://www.jucs.org/jucs_19_9/energy_efficient_smartphone_based/jucs_19_09_1295_1314_anguita.pdf
Collections
  • Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial - Articles de revista [1.277]
  • GREC - Grup de Recerca en Enginyeria del Coneixement - Articles de revista [94]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
jucs_19_09_1295_1314_anguita.pdf371,5KbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina