Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
59.762 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • GPLN - Grup de Processament del Llenguatge Natural
  • Ponències/Comunicacions de congressos
  • View Item
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • GPLN - Grup de Processament del Llenguatge Natural
  • Ponències/Comunicacions de congressos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deep evaluation of hybrid architectures: Use of different metrics in MERT weight optimization

Thumbnail
View/Open
Deep evaluation.pdf (493,0Kb)
Share:
 
  View Usage Statistics
Cita com:
hdl:2117/20415

Show full item record
España Bonet, Cristina
Labaka, Gorka
Díaz de Ilarraza Sánchez, Arantza
Màrquez Villodre, Lluís
Sarasola, Kepa
Document typeConference report
Defense date2013
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
The process of developing hybrid MT systems is usually guided by an evaluation method used to compare different combinations of basic subsystems. This work presents a deep evaluation experiment of a hybrid architecture, which combines rule-based and statistical translation approaches. Differences between the results obtained from automatic and human evaluations corroborate the inappropriateness of pure lexical automatic evaluation metrics to compare the outputs of systems that use very different translation approaches. An examination of sentences with controversial results suggested that linguistic well-formedness should be considered in the evaluation of output translations. Following this idea, we have experimented with a new simple automatic evaluation metric, which combines lexical and PoS information. This measure showed higher agreement with human assessments than BLEU in a previous study (Labaka et al., 2011). In this paper we have extended its usage throughout the system development cycle, focusing on its ability to improve parameter optimization. Results are not totally conclusive. Manual evaluation reflects a slight improvement, compared to BLEU, when using the proposed measure in system optimization. However, the improvement is too small to draw any clear conclusion. We believe that we should first focus on integrating more linguistically representative features in the developing of the hybrid system, and then go deeper into the development of automatic evaluation metrics.
CitationEspaña-Bonet, C. [et al.]. Deep evaluation of hybrid architectures: Use of different metrics in MERT weight optimization. A: Free/Open-Source Rule-Based Machine Translation. "Proceedings of the Free/Open-Source Rule-Based Machine Translation Workshop". Gòteborg: 2013, p. 65-76. 
URIhttp://hdl.handle.net/2117/20415
ISBN1652-926X
Publisher versionhttp://www.molto-project.eu/sites/default/files/FreeRBMT-2012.pdf
Collections
  • GPLN - Grup de Processament del Llenguatge Natural - Ponències/Comunicacions de congressos [192]
  • Departament de Ciències de la Computació - Ponències/Comunicacions de congressos [1.231]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
Deep evaluation.pdf493,0KbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina