Radial symmetry of solutions to diffusion equations with discontinuous nonlinearities
View/Open
Serra.pdf (163,2Kb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/20352
Document typeArticle
Defense date2013-02-15
Rights accessRestricted access - publisher's policy
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
We prove a radial symmetry result for bounded nonnegative solutions to the p-Laplacian semilinear equation −Δpu=f(u) posed in a ball of Rn and involving discontinuous nonlinearities f. When p=2 we obtain a new result which holds in every dimension n for certain positive discontinuous f. When p⩾n we prove radial symmetry for every locally bounded nonnegative f. Our approach is an extension of a method of P.L. Lions for the case p=n=2. It leads to radial symmetry combining the isoperimetric inequality and the Pohozaev identity.
CitationSerra, J. Radial symmetry of solutions to diffusion equations with discontinuous nonlinearities. "Journal of differential equations", 15 Febrer 2013, vol. 254, núm. 4, p. 1893-1902.
ISSN0022-0396
Publisher versionhttp://www.sciencedirect.com/science/article/pii/S0022039612004469
Collections
Files | Description | Size | Format | View |
---|---|---|---|---|
Serra.pdf![]() | 163,2Kb | Restricted access |