Phospholamban knockout breaks arrhythmogenic Ca2+ waves and suppresses catecholaminergic polymorphic ventricular tachycardia in mice
View/Open
CircRes_2013_113_Chen.pdf (6,130Mb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/20251
Document typeArticle
Defense date2013-07-15
Rights accessRestricted access - publisher's policy
Abstract
Rationale: Phospholamban (PLN) is an inhibitor of cardiac sarco(endo)plasmic reticulum Ca2+ ATPase. PLN knockout (PLN-KO) enhances sarcoplasmic reticulum Ca2+ load and Ca2+ leak. Conversely, PLN-KO accelerates Ca2+ sequestration and aborts arrhythmogenic spontaneous Ca2+ waves (SCWs). An important question is whether these seemingly paradoxical effects of PLN-KO exacerbate or protect against Ca2+-triggered arrhythmias.
Objective: We investigate the impact of PLN-KO on SCWs, triggered activities, and stress-induced ventricular tachyarrhythmias (VTs) in a mouse model of cardiac ryanodine-receptor (RyR2)-linked catecholaminergic polymorphic VT.
Methods and Results: We generated a PLN-deficient, RyR2-mutant mouse model (PLN−/−/RyR2-R4496C+/−) by crossbreeding PLN-KO mice with catecholaminergic polymorphic VT–associated RyR2-R4496C mutant mice. Ca2+ imaging and patch-clamp recording revealed cell-wide propagating SCWs and triggered activities in RyR2-R4496C+/− ventricular myocytes during sarcoplasmic reticulum Ca2+ overload. PLN-KO fragmented these cell-wide SCWs into mini-waves and Ca2+ sparks and suppressed the triggered activities evoked by sarcoplasmic reticulum Ca2+ overload. Importantly, these effects of PLN-KO were reverted by partially inhibiting sarco(endo)plasmic reticulum Ca2+ ATPase with 2,5-di-tert-butylhydroquinone. However, Bay K, caffeine, or Li+ failed to convert mini-waves to cell-wide SCWs in PLN−/−/RyR2-R4496C+/− ventricular myocytes. Furthermore, ECG analysis showed that PLN-KO mice are not susceptible to stress-induced VTs. On the contrary, PLN-KO protected RyR2-R4496C mutant mice from stress-induced VTs.
Conclusions: Our results demonstrate that despite severe sarcoplasmic reticulum Ca2+ leak, PLN-KO suppresses triggered activities and stress-induced VTs in a mouse model of catecholaminergic polymorphic VT. These data suggest that breaking up cell-wide propagating SCWs by enhancing Ca2+ sequestration represents an effective approach for suppressing Ca2+-triggered arrhythmias.
CitationBai, Y. [et al.]. Phospholamban knockout breaks arrhythmogenic Ca2+ waves and suppresses catecholaminergic polymorphic ventricular tachycardia in mice. "Circulation research", 15 Juliol 2013, vol. 113, p. 517-526.
ISSN0009-7330
Files | Description | Size | Format | View |
---|---|---|---|---|
CircRes_2013_113_Chen.pdf![]() | 6,130Mb | Restricted access |
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder