Show simple item record

dc.contributor.authorPeco Regales, Christian
dc.contributor.authorArroyo Balaguer, Marino
dc.contributor.authorRosolen, Adrian Martin
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtica Aplicada III
dc.date.accessioned2013-09-09T08:20:37Z
dc.date.created2013-09
dc.date.issued2013-09
dc.identifier.citationPeco, C.; Arroyo, M.; Rosolen, A. An adaptive meshfree method for phase-field models of biomembranes. Part I: Approximation with maximum-entropy basis functions. "Journal of computational physics", Setembre 2013, vol. 249, núm. 15, p. 303-319.
dc.identifier.issn0021-9991
dc.identifier.urihttp://hdl.handle.net/2117/20105
dc.description.abstractWe present an adaptive meshfree method to approximate phase-field models of biomembranes. In such models, the Helfrich curvature elastic energy, the surface area, and the enclosed volume of a vesicle are written as functionals of a continuous phase-field, which describes the interface in a smeared manner. Such functionals involve up to second-order spatial derivatives of the phase-field, leading to fourth-order Euler–Lagrange partial differential equations (PDE). The solutions develop sharp internal layers in the vicinity of the putative interface, and are nearly constant elsewhere. Thanks to the smoothness of the local maximum-entropy (max-ent) meshfree basis functions, we approximate numerically this high-order phase-field model with a direct Ritz–Galerkin method. The flexibility of the meshfree method allows us to easily adapt the grid to resolve the sharp features of the solutions. Thus, the proposed approach is more efficient than common tensor product methods (e.g. finite differences or spectral methods), and simpler than unstructured Cº finite element methods, applicable by reformulating the model as a system of second-order PDE. The proposed method, implemented here under the assumption of axisymmetry, allows us to show numerical evidence of convergence of the phase-field solutions to the sharp interface limit as the regularization parameter approaches zero. In a companion paper, we present a Lagrangian method based on the approximants analyzed here to study the dynamics of vesicles embedded in a viscous fluid.
dc.format.extent17 p.
dc.language.isoeng
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi numèrica::Mètodes numèrics
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica aplicada a les ciències
dc.subject.lcshMembranes (Biology) -- Mathematical models
dc.subject.otherMaximum-entropy approximants
dc.subject.otherMeshfree methods
dc.subject.otherAdaptivity
dc.subject.otherPhase field models
dc.subject.otherBiomembranes
dc.subject.otherVesicles
dc.titleAn adaptive meshfree method for phase-field models of biomembranes. Part I: Approximation with maximum-entropy basis functions
dc.typeArticle
dc.subject.lemacMembranes (Biologia)
dc.contributor.groupUniversitat Politècnica de Catalunya. LACÀN - Mètodes Numèrics en Ciències Aplicades i Enginyeria
dc.identifier.doi10.1016/j.jcp.2013.04.046
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttp://www.sciencedirect.com/science/article/pii/S0021999113003483
dc.rights.accessRestricted access - publisher's policy
local.identifier.drac12673485
dc.description.versionPostprint (published version)
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/FP7/240487/EU/Predictive models and simulations in nano- and biomolecular mechanics: a multiscale approach/PREDMODSIM
dc.date.lift10000-01-01
local.citation.authorPeco, C.; Arroyo, M.; Rosolen, A.
local.citation.publicationNameJournal of computational physics
local.citation.volume249
local.citation.number15
local.citation.startingPage303
local.citation.endingPage319


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder