Show simple item record

dc.contributor.authorNicolini, Paolo
dc.contributor.authorFrezzato, Diego
dc.contributor.authorGellini, Cristina
dc.contributor.authorBizzarri, Marco
dc.contributor.authorChelli, Riccardo
dc.date.accessioned2013-07-24T10:57:32Z
dc.date.created2013-07
dc.date.issued2013-07
dc.identifier.citationNicolini, P. [et al.]. Toward quantitative estimates of binding affinities for protein-ligand systems involving large inhibitor compounds: A steered molecular dynamics simulation route. "Journal of computational chemistry", Juliol 2013, vol. 34, núm. 8, p. 1561-1576.
dc.identifier.issn0192-8651
dc.identifier.urihttp://hdl.handle.net/2117/19998
dc.description.abstractUnderstanding binding mechanisms between enzymes and potential inhibitors and quantifying protein–ligand affinities in terms of binding free energy is of primary importance in drug design studies. In this respect, several approaches based on molecular dynamics simulations, often combined with docking techniques, have been exploited to investigate the physicochemical properties of complexes of pharmaceutical interest. Even if the geometric properties of a modeled protein–ligand complex can be well predicted by computational methods, it is still challenging to rank with chemical accuracy a series of ligand analogues in a consistent way. In this article, we face this issue calculating relative binding free energies of a focal adhesion kinase, an important target for the development of anticancer drugs, with pyrrolopyrimidine-based ligands having different inhibitory power. To this aim, we employ steered molecular dynamics simulations combined with nonequilibrium work theorems for free energy calculations. This technique proves very powerful when a series of ligand analogues is considered, allowing one to tackle estimation of protein–ligand relative binding free energies in a reasonable time. In our cases, the calculated binding affinities are comparable with those recovered from experiments by exploiting the Michaelis–Menten mechanism with a competitive inhibitor.
dc.format.extent16 p.
dc.language.isoeng
dc.subjectÀrees temàtiques de la UPC::Informàtica::Aplicacions de la informàtica::Bioinformàtica
dc.subject.lcshComputational chemistry
dc.subject.otherbinding free energy
dc.subject.otherprotein–ligand complexes
dc.subject.othersteered molecular dynamics simulations
dc.subject.otherfocal adhesion kinase
dc.titleToward quantitative estimates of binding affinities for protein-ligand systems involving large inhibitor compounds: A steered molecular dynamics simulation route
dc.typeArticle
dc.subject.lemacQuímica computacional
dc.identifier.doi10.1002/jcc.23286
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttp://onlinelibrary.wiley.com/doi/10.1002/jcc.23286/abstract;jsessionid=A03A2970BEA21123571F02B6ED66E329.d04t03
dc.rights.accessRestricted access - publisher's policy
local.identifier.drac12672475
dc.description.versionPostprint (published version)
dc.date.lift10000-01-01
local.citation.authorNicolini, P.; Frezzato, D.; Gellini, C.; Bizzarri, M.; Chelli, R.
local.citation.publicationNameJournal of computational chemistry
local.citation.volume34
local.citation.number8
local.citation.startingPage1561
local.citation.endingPage1576


Files in this item

Thumbnail

This item appears in the following Collection(s)

    Show simple item record

    All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder