dc.contributor.author | Barbero Liñán, María |
dc.contributor.author | Muñoz Lecanda, Miguel Carlos |
dc.contributor.other | Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada IV |
dc.date.accessioned | 2008-05-08T14:57:25Z |
dc.date.available | 2008-05-08T14:57:25Z |
dc.date.issued | 2008-10 |
dc.identifier.citation | Barbero Liñán, María; Muñoz Lecanda, Miguel Carlos. “Geometric approach to Pontryagin's Maximum Principle”. Acta Applicandae Mathematicae, 2008, vol. 104, núm. XX, p. XX-XX. |
dc.identifier.issn | 0167-8019 (Print) |
dc.identifier.issn | 1572-9036 (Online) |
dc.identifier.uri | http://hdl.handle.net/2117/1987 |
dc.description.abstract | Since the second half of the 20th century, Pontryagin’s Maximum Principle has been
widely discussed and used as a method to solve optimal control problems in medicine,
robotics, finance, engineering, astronomy. Here, we focus on the proof and on the understanding
of this Principle, using as much geometric ideas and geometric tools as possible.
This approach provides a better and clearer understanding of the Principle and, in particular,
of the role of the abnormal extremals. These extremals are interesting because they do not
depend on the cost function, but only on the control system. Moreover, they were discarded
as solutions until the nineties, when examples of strict abnormal optimal curves were found.
In order to give a detailed exposition of the proof, the paper is mostly self–contained, which
forces us to consider different areas in mathematics such as algebra, analysis, geometry. |
dc.format.extent | 56 p. |
dc.language.iso | eng |
dc.publisher | Springer Netherlands |
dc.rights | Attribution-NonCommercial-NoDerivs 2.5 Spain |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/2.5/es/ |
dc.subject.lcsh | Differential equations |
dc.subject.lcsh | Mathematical optimization |
dc.subject.lcsh | System theory |
dc.subject.other | Pontryagin's Maximum Principle |
dc.subject.other | perturbation vectors |
dc.subject.other | tangent perturbation cones |
dc.subject.other | optimal control problems |
dc.title | Geometric approach to Pontryagin's Maximum Principle |
dc.type | Article |
dc.subject.lemac | Equacions diferencials ordinàries |
dc.subject.lemac | Optimització matemàtica |
dc.subject.lemac | Sistemes de control |
dc.contributor.group | Universitat Politècnica de Catalunya. DGDSA - Geometria Diferencial, Sistemes Dinàmics i Aplicacions |
dc.identifier.doi | 10.1007/s10440-008-9320-5 |
dc.description.peerreviewed | Peer Reviewed |
dc.subject.ams | Classificació AMS::34 Ordinary differential equations::34A General theory |
dc.subject.ams | Classificació AMS::49 Calculus of variations and optimal control; optimization::49J Existence theories |
dc.subject.ams | Classificació AMS::49 Calculus of variations and optimal control; optimization::49K Necessary conditions and sufficient conditions for optimality |
dc.subject.ams | Classificació AMS::93 Systems Theory; Control::93C Control systems, guided systems |
dc.rights.access | Open Access |
local.personalitzacitacio | true |