Show simple item record

dc.contributor.authorMarqués Truyol, Francisco
dc.contributor.authorMeseguer Serrano, Álvaro
dc.contributor.authorLopez, Juan M.
dc.contributor.authorPacheco, Jose Rafael
dc.contributor.authorLópez Alonso, José Manuel
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Física Aplicada
dc.date.accessioned2013-07-08T15:25:06Z
dc.date.created2013-04-08
dc.date.issued2013-04-08
dc.identifier.citationMarques, F. [et al.]. Bifurcations with imperfect SO(2) symmetry and pinning of rotating waves. "Proceedings of the Royal Society A. Mathematical physical and engineering sciences", 08 Abril 2013, vol. 469, núm. 2152, p. 1-18.
dc.identifier.issn1364-5021
dc.identifier.urihttp://hdl.handle.net/2117/19861
dc.description.abstractRotating waves are periodic solutions in SO(2) equivariant dynamical systems. Their precession frequency changes with parameters and it may change sign, passing through zero. When this happens, the dynamical system is very sensitive to imperfections that break the SO(2) symmetry and the waves may become trapped by the imperfections, resulting in steady solutions that exist in a finite region in parameter space. This is the so-called pinning phenomenon. In this study, we analyse the breaking of the SO(2) symmetry in a dynamical system close to a Hopf bifurcation whose frequency changes sign along a curve in parameter space. The problem is very complex, as it involves the complete unfolding of high codimension. A detailed analysis of different types of imperfections indicates that a pinning region surrounded by infinite-period bifurcation curves appears in all cases. Complex bifurcational processes, strongly dependent on the specifics of the symmetry breaking, appear very close to the intersection of the Hopf bifurcation and the pinning region. Scaling laws of the pinning region width and partial breaking of SO(2) to Zm are also considered. Previous as well as new experimental and numerical studies of pinned rotating waves are reviewed in the light of the new theoretical results.
dc.format.extent18 p.
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Física
dc.subject.lcshRayleigh-Bénard convection
dc.subject.otherEquivariant Hopf bifurcation
dc.subject.otherImperfections
dc.subject.otherPinning phenomenon
dc.subject.otherRotating Rayleigh-Benard convection
dc.subject.otherTaylor-Couette fow
dc.titleBifurcations with imperfect SO(2) symmetry and pinning of rotating waves
dc.typeArticle
dc.subject.lemacRayleigh-Bénard, Convecció de
dc.contributor.groupUniversitat Politècnica de Catalunya. DF - Dinàmica No Lineal de Fluids
dc.identifier.doi10.1098/rspa.2012.0348
dc.relation.publisherversionhttp://rspa.royalsocietypublishing.org/content/469/2152/20120348
dc.rights.accessRestricted access - publisher's policy
drac.iddocument12659748
dc.description.versionPostprint (published version)
dc.date.lift10000-01-01
upcommons.citation.authorMarques, F.; Meseguer, A.; Lopez, J. M.; Pacheco, J.R.; Lopez, J.
upcommons.citation.publishedtrue
upcommons.citation.publicationNameProceedings of the Royal Society A. Mathematical physical and engineering sciences
upcommons.citation.volume469
upcommons.citation.number2152
upcommons.citation.startingPage1
upcommons.citation.endingPage18


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Except where otherwise noted, content on this work is licensed under a Creative Commons license: Attribution-NonCommercial-NoDerivs 3.0 Spain