A high-productivity task-based programming model for clusters
View/Open
A high-productivity task-based programming model for clusters (758,1Kb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/19809
Document typeArticle
Defense date2012-12-15
Rights accessRestricted access - publisher's policy
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
Programming for large-scale, multicore-based architectures requires adequate tools that offer ease of programming and do not hinder application performance. StarSs is a family of parallel programming models based on automatic function-level parallelism that targets productivity. StarSs deploys a data-flow model: it analyzes dependencies between tasks and manages their execution, exploiting their concurrency as much
as possible.
This paper introduces Cluster Superscalar (ClusterSs), a new StarSs member designed to execute on clusters of SMPs (Symmetric Multiprocessors). ClusterSs tasks are asynchronously created and assigned to the available resources with the support of the IBM APGAS runtime, which provides an efficient and portable communication layer based on one-sided communication.
We present the design of ClusterSs on top of APGAS, as well as the programming model and execution runtime for Java applications. Finally, we evaluate the productivity of ClusterSs, both in terms of programmability and performance and compare it to that of the IBM X10 language.
CitationTejedor, E. [et al.]. A high-productivity task-based programming model for clusters. "Concurrency and computation. Practice and experience", 25 Desembre 2012, vol. 24, núm. 18, p. 2421-2448.
ISSN1532-0626
Publisher versionhttp://onlinelibrary.wiley.com/doi/10.1002/cpe.2831/abstract
Files | Description | Size | Format | View |
---|---|---|---|---|
A high-producti ... ing model for clusters.pdf![]() | A high-productivity task-based programming model for clusters | 758,1Kb | Restricted access |