Show simple item record

dc.contributor.authorOllé Torner, Mercè
dc.contributor.authorPacha Andújar, Juan Ramón
dc.contributor.authorVillanueva Castelltort, Jordi
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I
dc.date.accessioned2008-04-22T14:58:53Z
dc.date.available2008-04-22T14:58:53Z
dc.date.created2007
dc.date.issued2007-08-20
dc.identifier.citationOllé, M.; Pacha, J.R.; Villanueva, J. KAM aspects of the quasi-periodic Hamiltonian Hopf bifurcation: summary of results. A: International Symposium on Classical and Celestial Mechanics. 6è. Moscú, [s.n], 2007
dc.identifier.urihttp://hdl.handle.net/2117/1956
dc.description.abstractIn this work we consider a 1:-1 non semi-simple resonant periodic orbit of a three-degrees of freedom real analytic Hamiltonian system. From the formal analysis of the normal form, it is proved the branching off a two-parameter family of two-dimensional invariant tori of the normalised system, whose normal behaviour depends intrinsically on the coefficients of its low-order terms. Thus, only elliptic or elliptic together with parabolic and hyperbolic tori may detach form the resonant periodic orbit. Both patterns are mentioned in the literature as the direct and, respectively, inverse quasiperiodic Hopf bifurcation. In this report we focus on the direct case, which has many applications in several fields of science. Thus, we present here a summary of the results, obtained in the framework of KAM theory, concerning the persistence of most of the (normally) elliptic tori of the normal form, when the whole Hamiltonian is taken into account, and to give a very precise characterisation of the parameters labelling them, which can be selected with a very clear dynamical meaning. These results include sharp quantitative estimates on the “density” of surviving tori, when the distance to the resonant periodic orbit goes to zero, and state that the 4-dimensional Cantor manifold holding these tori admits a Whitney-C^\infty extension. In addition, an application to the Circular Spatial Three-Body Problem (CSRTBP) is reviewed.
dc.format.extent22 p.
dc.language.isoeng
dc.publishers.n.
dc.relation.ispartofInternational Symposium on Classical and Celestial Mechanics
dc.subject.lcshBifurcation theory
dc.subject.otherKAM
dc.titleKAM aspects of the quasi-periodic Hamiltonian Hopf bifurcation: summary of results
dc.typeConference report
dc.subject.lemacBifurcació, Teoria de la
dc.contributor.groupUniversitat Politècnica de Catalunya. EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions
dc.date.end2007-08-06
dc.date.start2007-08-01
dc.description.peerreviewedPeer Reviewed
dc.subject.amsClassificació AMS::37 Dynamical systems and ergodic theory::37G Local and nonlocal bifurcation theory
dc.rights.accessOpen Access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder