On the design of a UAS flight plan monitoring and edition system
View/Open
On the design of a UAS flight plan monitoring and edition system (5,760Mb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/19343
Document typeConference report
Defense date2010
PublisherInstitute of Electrical and Electronics Engineers (IEEE)
Rights accessRestricted access - publisher's policy
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
This paper addresses various aspects of the design and development of the pilot interface for the exploitation of highly advanced flight plan capabilities specifically designed for Unmanned Aerial Systems (UAS). This flight plan capabilities are built on top a flexible and reusable hardware/software architecture designed to facilitate the development of UAS-based applications. This flexibility is organized into an user-parameterizable UAS Service Abstraction Layer (USAL). The USAL defines a collection of standard services are their interrelations as a basic starting point for further development by UAS users. Previous research presented the advanced flying capabilities of a UAS as an extension of the Flight Control System (FCS) functionalities. Assuming a UAS with a FCS that ensures safe and stable maneuvers, we complement it with a highly capable flight plan management system. USAL flight plan is characterized by offering semantically much richer constructs than those present in most current UAS autopilots, which rely on simple lists of waypoints. This list of waypoints approach has several important limitations: it is difficult to specify complex trajectories and it does not support constructs such as conditional forks or iterations, small changes may imply having to deal with a considerable amount of waypoints and it provides no mechanism for adapting to mission time circumstances. To address these issues a new flight plan specification mechanism is proposed, that incorporates a leg concept extended to accommodate higher level constructs for specifying iterations and forks. Additional leg types, referred to as parametric leg, are also introduced. The trajectory defined by a parametric leg is automatically generated as a function of mission variables, enabling dynamic behavior and providing a very valuable means for adapting the flight to the mission evolution. Another level of adaption is provided by the conditions governing the decision-making in intersection le- - gs and the finalization of iterative legs. In this work we will focus on the development of the pilot interface for the exploitation of the introduced flight plan capabilities. The interface design requirements address an increase level of automated operation and support to react to unexpected requirements due to mission changes. Therefore, this interaction includes the available mechanisms to update the flight-plan according to UAS mission requirements, skip parts of it, react to operational contingencies, etc.
CitationPastor, E. [et al.]. On the design of a UAS flight plan monitoring and edition system. A: IEEE Aerospace Conference. "2010 IEEE Aerospace Conference proceedings: 6-13 March 2010: Big Sky, Montana, USA". Big Sky, Montana: Institute of Electrical and Electronics Engineers (IEEE), 2010, p. 1-20.
ISBN9781424438884
Publisher versionhttp://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5446778&tag=1
Files | Description | Size | Format | View |
---|---|---|---|---|
On the design o ... ing and edition system.pdf | On the design of a UAS flight plan monitoring and edition system | 5,760Mb | Restricted access |