Show simple item record

dc.contributor.authorBoffi, Daniele
dc.contributor.authorCavallini, Nicola
dc.contributor.authorGardini, Francesca
dc.contributor.authorGastaldi, Lucia
dc.date.accessioned2020-07-16T09:28:13Z
dc.date.available2020-07-16T09:28:13Z
dc.date.issued2011
dc.identifier.isbn978-84-89925-78-6
dc.identifier.urihttp://hdl.handle.net/2117/193016
dc.description.abstractThe aim of this paper is to understand the performances of different finite elements in the space discretization of the Finite Element Immersed Boundary Method. In this exploration we will analyze two popular solution spaces: Hood-Taylor and Bercovier- Pironneau (P1-iso-P2). Immersed boundary solution is characterized by pressure discontinuities at fluid structure interface. Due to such a discontinuity a natural enrichment choice is to add piecewise constant functions to the pressure space. Results show that P1 + P0 pressure spaces are a significant cure for the well known “boundary leakage” affecting IBM. Convergence analysis is performed, showing how the discontinuity in the pressure is affecting the convergence rate for our finite element approximation.
dc.format.extent12 p.
dc.language.isoeng
dc.publisherCIMNE
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi numèrica::Mètodes en elements finits
dc.subject.lcshFinite element method
dc.subject.lcshCoupled problems (Complex systems) -- Numerical solutions
dc.subject.otherFinite Elements, Immersed Boundary Method, Fluid-Structure Interactions, Mass conservation
dc.titleImmersed boundary method: performance analysis of popular finite element spaces
dc.typeConference report
dc.subject.lemacElements finits, Mètode dels
dc.rights.accessOpen Access
local.citation.contributorCOUPLED IV
local.citation.publicationNameCOUPLED IV : proceedings of the IV International Conference on Computational Methods for Coupled Problems in Science and Engineering
local.citation.startingPage135
local.citation.endingPage146


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder