On the analyticity of the MGT-viscoelastic plate with heat conduction
View/Open
MGT-Viscoelastic.pdf (203,3Kb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/192903
Document typeArticle
Defense date2020-10
Rights accessRestricted access - publisher's policy
(embargoed until 2022-06-16)
Abstract
We consider a viscoelastic plate equation of Moore-Gibson-Thompson type coupled with two different kinds of thermal laws, namely, the usual Fourier one and the heat conduction law of type III. In both cases, the resulting system is shown to generate a contraction semigroup of solutions on a suitable Hilbert space. Then we prove that these semigroups are analytic, despite the fact that the semigroup generated by the mechanical equation alone does not share the same property. This means that the coupling with the heat equation produces a regularizing effect on the dynamics, implying in particular the impossibility of the localization of solutions. As a byproduct of our main result, the exponential stability of the semigroups is established.
CitationConti, M. [et al.]. On the analyticity of the MGT-viscoelastic plate with heat conduction. "Journal of differential equations", Octubre 2020, vol. 269, núm. 10, p. 7862-7880.
ISSN0022-0396
Files | Description | Size | Format | View |
---|---|---|---|---|
MGT-Viscoelastic.pdf![]() | 203,3Kb | Restricted access |
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 4.0 Generic